LEGO 150% at Magnificata Alignment Fonts Style MathWorld I Demonstrations I Wolfram Con MATHEMATICA STUDENT EDITION 12, 13. 11. 10, 9. 8. 6. 3. 5. 2. V Cos [t]? Cos [t]? + Sin [t]? + Sin[t]? |f" (x) | (1+(f' (x))²)3/2 (b) Plot K(x) for 0sxs1. (c) Find the point (x,y) 3. (a) Find the curvature function k(x) for y = cos x using the formula K = %D where the curvature has its maximum. T' (t) ||T' (t)|| * 3 л 4. Determine the unit normal vectors to r(t) = ti+ sin tj att = and t = " using the formula N' (t) %3D %3D ||T' (t)|| ', (b) ||r' (t)|| 5. Determine the curvature and torsion of the vector-valued function r(t) = (3 + 2 t) i + 6tj+ (5 - t) k (a) using the formulas K = %3D using the built-in function ArcCurvature, (3) using the built-in function FrenetSerretSystem. ||T' (t)|| (b) using the built-in 6. Find the curvature and torsion of the general helix r(t) = a cos ti + a sin tj+ctk (a) using the formulas K = %3D ||r' (t)|| function ArcCurvature, (3) using the built-in function FrenetSerretSystem. Inf- r[t_] := {a * Cos [ t], a * Sin[[t], c* t} %3D = Sqrt[r'[t].r'[t]] Inf-)= ndr[t_] Ve?+ a? Cos (t] + a? Sin[t]? Outf 1= Inf J ndr2 = Simplify [%, Element [t, Reals]] %3D Outf ) Va? + c? Int 1 T[t_] =r'[t] / ndr2 a Sin [t] a Cos [t] dutf 1- MacBook Air 000 esc F3 F8 F10 F12 F4 F6 FR %24 4. 6. 9 7. delete T. E R. fab

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
icon
Concept explainers
Topic Video
Question

Question 3: A, B, C

LEGO
150%
at
Magnificata
Alignment
Fonts
Style
MathWorld I
Demonstrations I
Wolfram Con
MATHEMATICA STUDENT EDITION
12,
13.
11.
10,
9.
8.
6.
3.
5.
2.
V Cos [t]?
Cos [t]? + Sin [t]?
+ Sin[t]?
|f" (x) |
(1+(f' (x))²)3/2
(b) Plot K(x) for 0sxs1. (c) Find the point (x,y)
3. (a) Find the curvature function k(x) for y = cos x using the formula K =
%D
where the curvature has its maximum.
T' (t)
||T' (t)|| *
3 л
4. Determine the unit normal vectors to r(t) = ti+ sin tj att =
and t = " using the formula N' (t)
%3D
%3D
||T' (t)||
', (b)
||r' (t)||
5. Determine the curvature and torsion of the vector-valued function r(t) = (3 + 2 t) i + 6tj+ (5 - t) k (a) using the formulas K =
%3D
using the built-in function ArcCurvature, (3) using the built-in function FrenetSerretSystem.
||T' (t)||
(b) using the built-in
6. Find the curvature and torsion of the general helix r(t) = a cos ti + a sin tj+ctk (a) using the formulas K =
%3D
||r' (t)||
function ArcCurvature, (3) using the built-in function FrenetSerretSystem.
Inf- r[t_] := {a * Cos [ t], a * Sin[[t], c* t}
%3D
= Sqrt[r'[t].r'[t]]
Inf-)= ndr[t_]
Ve?+ a? Cos (t] + a? Sin[t]?
Outf 1=
Inf J ndr2 = Simplify [%, Element [t, Reals]]
%3D
Outf ) Va? + c?
Int 1 T[t_] =r'[t] / ndr2
a Sin [t]
a Cos [t]
dutf 1-
MacBook Air
000
esc
F3
F8
F10
F12
F4
F6
FR
%24
4.
6.
9
7.
delete
T.
E
R.
fab
Transcribed Image Text:LEGO 150% at Magnificata Alignment Fonts Style MathWorld I Demonstrations I Wolfram Con MATHEMATICA STUDENT EDITION 12, 13. 11. 10, 9. 8. 6. 3. 5. 2. V Cos [t]? Cos [t]? + Sin [t]? + Sin[t]? |f" (x) | (1+(f' (x))²)3/2 (b) Plot K(x) for 0sxs1. (c) Find the point (x,y) 3. (a) Find the curvature function k(x) for y = cos x using the formula K = %D where the curvature has its maximum. T' (t) ||T' (t)|| * 3 л 4. Determine the unit normal vectors to r(t) = ti+ sin tj att = and t = " using the formula N' (t) %3D %3D ||T' (t)|| ', (b) ||r' (t)|| 5. Determine the curvature and torsion of the vector-valued function r(t) = (3 + 2 t) i + 6tj+ (5 - t) k (a) using the formulas K = %3D using the built-in function ArcCurvature, (3) using the built-in function FrenetSerretSystem. ||T' (t)|| (b) using the built-in 6. Find the curvature and torsion of the general helix r(t) = a cos ti + a sin tj+ctk (a) using the formulas K = %3D ||r' (t)|| function ArcCurvature, (3) using the built-in function FrenetSerretSystem. Inf- r[t_] := {a * Cos [ t], a * Sin[[t], c* t} %3D = Sqrt[r'[t].r'[t]] Inf-)= ndr[t_] Ve?+ a? Cos (t] + a? Sin[t]? Outf 1= Inf J ndr2 = Simplify [%, Element [t, Reals]] %3D Outf ) Va? + c? Int 1 T[t_] =r'[t] / ndr2 a Sin [t] a Cos [t] dutf 1- MacBook Air 000 esc F3 F8 F10 F12 F4 F6 FR %24 4. 6. 9 7. delete T. E R. fab
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Sample space, Events, and Basic Rules of Probability
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning