kx +5 for x ≤ 2 Let fx = = x-1 for x > 2 Find the value of k for which f(x) is continuous at x=2. OA) -2 B) -1 C) O OD) 1 OE) 7

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
## Continuity of a Piecewise Function at a Point

Consider the following piecewise function \( f(x) \):

\[ 
f(x) = 
\begin{cases} 
kx + 5 & \text{for } x \le 2 \\
x - 1 & \text{for } x > 2 
\end{cases}
\]

We need to determine the value of \( k \) for which the function \( f(x) \) is continuous at \( x = 2 \).

### Steps to Determine Continuity:

1. **Evaluate the Function from the Left at \( x = 2 \):**
   \[
   \lim_{{x \to 2^-}} f(x) = \lim_{{x \to 2^-}} (kx + 5) = k \cdot 2 + 5 = 2k + 5
   \]

2. **Evaluate the Function from the Right at \( x = 2 \):**
   \[
   \lim_{{x \to 2^+}} f(x) = \lim_{{x \to 2^+}} (x - 1) = 2 - 1 = 1
   \]

3. **Set the Left and Right Limits Equal for Continuity at \( x = 2 \):**
   \[
   2k + 5 = 1
   \]

4. **Solve for \( k \):**
   \[
   2k + 5 = 1 \\
   2k = 1 - 5 \\
   2k = -4 \\
   k = -2
   \]

Therefore, the value of \( k \) that makes \( f(x) \) continuous at \( x = 2 \) is \( -2 \).

### Answer Options:

- A) -2
- B) -1
- C) 0
- D) 1
- E) 7

The correct answer is **A) -2**.
Transcribed Image Text:## Continuity of a Piecewise Function at a Point Consider the following piecewise function \( f(x) \): \[ f(x) = \begin{cases} kx + 5 & \text{for } x \le 2 \\ x - 1 & \text{for } x > 2 \end{cases} \] We need to determine the value of \( k \) for which the function \( f(x) \) is continuous at \( x = 2 \). ### Steps to Determine Continuity: 1. **Evaluate the Function from the Left at \( x = 2 \):** \[ \lim_{{x \to 2^-}} f(x) = \lim_{{x \to 2^-}} (kx + 5) = k \cdot 2 + 5 = 2k + 5 \] 2. **Evaluate the Function from the Right at \( x = 2 \):** \[ \lim_{{x \to 2^+}} f(x) = \lim_{{x \to 2^+}} (x - 1) = 2 - 1 = 1 \] 3. **Set the Left and Right Limits Equal for Continuity at \( x = 2 \):** \[ 2k + 5 = 1 \] 4. **Solve for \( k \):** \[ 2k + 5 = 1 \\ 2k = 1 - 5 \\ 2k = -4 \\ k = -2 \] Therefore, the value of \( k \) that makes \( f(x) \) continuous at \( x = 2 \) is \( -2 \). ### Answer Options: - A) -2 - B) -1 - C) 0 - D) 1 - E) 7 The correct answer is **A) -2**.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning