kg˙m2/s, about the origin at time t = 1 s.    Part (d)  Use the same set of parameter values (m = 1.8 kg, x = 1.8 m/s0, y = 2.4 m/s1, z = 0.15 m/s2, a = 0, b = 1, c = 2) to calculate the y-component of the particle’s angular momentum, in units of kg˙m2/s, about the origin at time t = 1 s.

icon
Related questions
Question
100%

  A point particle of mass m = 1.8 kg moves according to the position function: r(t) = xtai + ytbj + ztck, where t denotes time and xyzab, and c are constants such that the exponents are positive integers and the position function has the dimension of length.

 Part (a)  We can write the particle’s velocity function in the form v(t) = ntdi + otej + ptgk. Enter an expression for n in terms of xyzab, and c

 Part (b)  The particle’s velocity function will have the form v(t) = ntdi + otej + ptgk. Enter an expression for d in terms of xyzab, and c
 Part (c)  Here is a set of parameter values for the motion of the particle: m = 1.8 kg, x = 1.8 m/s0y = 2.4 m/s1z = 0.15 m/s2a = 0, b = 1, c = 2. Calculate the x-component of the particle’s angular momentum, in units of kg˙m2/s, about the origin at time t = 1 s. 
  Part (d)  Use the same set of parameter values (m = 1.8 kg, x = 1.8 m/s0y = 2.4 m/s1z = 0.15 m/s2a = 0, b = 1, c = 2) to calculate the y-component of the particle’s angular momentum, in units of kg˙m2/s, about the origin at time t = 1 s. 

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer