ketch the triangle. LA = 30°, LC = 65°, b = 14 C A 65 14 30° В 30° 14 C 65° 30 14 14 30° A А 65°

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
100%
**Triangle Sketching Exercise**

**Problem:**
Sketch the triangle.

\(\angle A = 30^\circ\), \(\angle C = 65^\circ\), \(b = 14\)

**Diagrams:**
1. The first triangle is labeled \(ABC\), with:
   - \(\angle B = 65^\circ\)
   - \(\angle C = 30^\circ\)
   - Side \(AC = 14\)

2. The second triangle is rotated, labeled \(ABC\), with:
   - \(\angle A = 65^\circ\)
   - \(\angle C = 30^\circ\)
   - Side \(BC = 14\)

3. The third triangle is labeled \(ABC\), with:
   - \(\angle B = 30^\circ\)
   - \(\angle C = 65^\circ\)
   - Side \(AB = 14\)

4. The fourth triangle is confirmed as correct:
   - \(\angle A = 30^\circ\)
   - \(\angle C = 65^\circ\)
   - Side \(AB = 14\)

**Task:**
Solve the triangle using the Law of Sines. (Round side lengths to one decimal place.)

- \(a =\) 
- \(c =\) 
- \(\angle B =\) 

**Guidance:**
To solve the triangle, apply the Law of Sines:

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

Calculate the missing side lengths and angle \(B\).
Transcribed Image Text:**Triangle Sketching Exercise** **Problem:** Sketch the triangle. \(\angle A = 30^\circ\), \(\angle C = 65^\circ\), \(b = 14\) **Diagrams:** 1. The first triangle is labeled \(ABC\), with: - \(\angle B = 65^\circ\) - \(\angle C = 30^\circ\) - Side \(AC = 14\) 2. The second triangle is rotated, labeled \(ABC\), with: - \(\angle A = 65^\circ\) - \(\angle C = 30^\circ\) - Side \(BC = 14\) 3. The third triangle is labeled \(ABC\), with: - \(\angle B = 30^\circ\) - \(\angle C = 65^\circ\) - Side \(AB = 14\) 4. The fourth triangle is confirmed as correct: - \(\angle A = 30^\circ\) - \(\angle C = 65^\circ\) - Side \(AB = 14\) **Task:** Solve the triangle using the Law of Sines. (Round side lengths to one decimal place.) - \(a =\) - \(c =\) - \(\angle B =\) **Guidance:** To solve the triangle, apply the Law of Sines: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] Calculate the missing side lengths and angle \(B\).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning