Jx + 1 if x is even b. f(x) = S = {0, 1, 5, 9}, T = Z – E if x is odd; 2 7 11

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
3b. only please
1. For the given sets, form the indicated Cartesian product.
a. A × B; A = {a, b}, B = {0, 1}
b. B X A; A = {a; b}, B = {0, 1}
c. A X B; A = {2, 4, 6, 8}, B = {2}
d. B X A; A = {1, 5, 9}, B = {-1, 1}
e. BX A; A = B = {1, 2, 3}
2. For each of the following mappings, state the domain, the codomain, and the range,
where f: E →Z.
a. f(x) = x/2, x E E
b. f(x) = x, x E E
c. f(x) =
|x|, x E E
d. f(x) = x + 1, x E E
(3. For each of the following mappings, write out f(S) and f'(T) for the given S and T,
where f: Z →Z.
a. f(x) = |x|; S = Z – E, T = {1, 3, 4}
Sx + 1 if x is even
b. f(x) =
S = {0, 1, 5, 9}, T = Z – E
if x is odd;
Co f(x) = x²; S ={-2, – 1, 0, 1, 2}, T = {2,7, 11}
d. f(x) = |x| – x; S = T = {-7, -1,0, 2, 4}
4. For each of the following mappings f: Z→Z, determine whether the mapping is onto
and whether it is one-to-one. Justify all negative answers.
a. f(x) = 2x
b. f(x) = 3x
C f(x) = x + 3
e. f(x) = |x|
d. f(x) = x
f. f(x) = x – |x|
%3D
е.
Transcribed Image Text:1. For the given sets, form the indicated Cartesian product. a. A × B; A = {a, b}, B = {0, 1} b. B X A; A = {a; b}, B = {0, 1} c. A X B; A = {2, 4, 6, 8}, B = {2} d. B X A; A = {1, 5, 9}, B = {-1, 1} e. BX A; A = B = {1, 2, 3} 2. For each of the following mappings, state the domain, the codomain, and the range, where f: E →Z. a. f(x) = x/2, x E E b. f(x) = x, x E E c. f(x) = |x|, x E E d. f(x) = x + 1, x E E (3. For each of the following mappings, write out f(S) and f'(T) for the given S and T, where f: Z →Z. a. f(x) = |x|; S = Z – E, T = {1, 3, 4} Sx + 1 if x is even b. f(x) = S = {0, 1, 5, 9}, T = Z – E if x is odd; Co f(x) = x²; S ={-2, – 1, 0, 1, 2}, T = {2,7, 11} d. f(x) = |x| – x; S = T = {-7, -1,0, 2, 4} 4. For each of the following mappings f: Z→Z, determine whether the mapping is onto and whether it is one-to-one. Justify all negative answers. a. f(x) = 2x b. f(x) = 3x C f(x) = x + 3 e. f(x) = |x| d. f(x) = x f. f(x) = x – |x| %3D е.
Expert Solution
Step 1

The given function isfx=x+1if x is evenxif x is oddS=0, 1, 5, 9T=-Ewhere  is the set of integers and E is the set of even integers

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning