Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Just answer 3c
**Problem 3:**

For each of the following linear operators \( T \) on a vector space \( V \) and ordered bases \( \beta \), compute \([T]_{\beta}\), and determine whether \( \beta \) is a basis consisting of eigenvectors of \( T \).

---

**(a)**
- \( V = \mathbb{R}^2 \)
- \( T \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 10a - 6b \\ 17a - 10b \end{pmatrix} \)
- \( \beta = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\} \)

---

**(b)**
- \( V = P_1(\mathbb{R}) \)
- \( T(a + bx) = (6a - 6b) + (12a - 11b)x \)
- \( \beta = \{3 + 4x, 2 + 3x\} \)

---

**(c)**
- \( V = \mathbb{R}^3 \)
- \( T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 3a + 2b - 2c \\ -4a - 3b + 2c \\ -c \end{pmatrix} \)
- \( \beta = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \right\} \)
Transcribed Image Text:**Problem 3:** For each of the following linear operators \( T \) on a vector space \( V \) and ordered bases \( \beta \), compute \([T]_{\beta}\), and determine whether \( \beta \) is a basis consisting of eigenvectors of \( T \). --- **(a)** - \( V = \mathbb{R}^2 \) - \( T \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 10a - 6b \\ 17a - 10b \end{pmatrix} \) - \( \beta = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\} \) --- **(b)** - \( V = P_1(\mathbb{R}) \) - \( T(a + bx) = (6a - 6b) + (12a - 11b)x \) - \( \beta = \{3 + 4x, 2 + 3x\} \) --- **(c)** - \( V = \mathbb{R}^3 \) - \( T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 3a + 2b - 2c \\ -4a - 3b + 2c \\ -c \end{pmatrix} \) - \( \beta = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \right\} \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,