Jump to level1 A sales manager for a large department store believes that customer spending per visit with a sale is higher than customer spending without a sale, and would like to test that claim. A simple random sample of customer spending is taken from without a sale and with a sale. The results are shown below. Without sale With sale 74.894 Mean 78.138 Variance 1951.47 18S2.0102 Observations 200 300 Hypothesized Mean Difference df 419 t Stat 0.813 P(T<=t) one-tail t Critical one-tail 0.208 1.648 P(T<=t) two-tail t Critical two-tail 0.417 1.966 Confidence Level 95% -2 -1 3. p = 0.208 Samples from without sale: n1 = Ex: 9 t = 0.813 Samples from with sale: n2 = Point estimate for spending without sale: I = Ex: 1.234 Point estimate for spending with sale: 2

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
308.2364912.qx3zqy7
Jump to level 1
A sales manager for a large department store believes that customer spending per visit with a sale is higher than
customer spending without a sale, and would like to test that claim. A simple random sample of customer spending is
taken from without a sale and with a sale. The results are shown below.
Without sale With sale
Mean
78.138
Variance
1951.47 1852.0102
Observations
200
300
Hypothesized Mean Difference
0.
419
t Stat
0.813
P(T<=t) one-tail
t Critical one-tail
0.208
1.648
P(T<=t) two-tail
t Critical two-tail
1.966
Confidence Level
95%
3)
p= 0.208
Samples from without sale: nị =
Ex 9
t =
0.813
Samples from with sale: n =
Point estimate for spending without sale a1
Ex: 1.234
Point estimate for spending with sale. 2 =
Transcribed Image Text:308.2364912.qx3zqy7 Jump to level 1 A sales manager for a large department store believes that customer spending per visit with a sale is higher than customer spending without a sale, and would like to test that claim. A simple random sample of customer spending is taken from without a sale and with a sale. The results are shown below. Without sale With sale Mean 78.138 Variance 1951.47 1852.0102 Observations 200 300 Hypothesized Mean Difference 0. 419 t Stat 0.813 P(T<=t) one-tail t Critical one-tail 0.208 1.648 P(T<=t) two-tail t Critical two-tail 1.966 Confidence Level 95% 3) p= 0.208 Samples from without sale: nị = Ex 9 t = 0.813 Samples from with sale: n = Point estimate for spending without sale a1 Ex: 1.234 Point estimate for spending with sale. 2 =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman