Jse the specified row transformation to change the given matrix. 145 7R, + R2 -7 2 -1 9 7 ..... What is the transformed matrix? 4 5 9 7 0 .....

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Row Transformation of a Matrix

#### Task
Use the specified row transformation to change the given matrix using the operation \(7R_1 + R_2\).

#### Given Matrix
\[
\begin{bmatrix}
1 & 4 & 5 \\
-7 & 2 & -1 \\
9 & 7 & 0
\end{bmatrix}
\]

#### Row Transformation
- Apply the transformation \(7R_1 + R_2\) to the matrix.

#### Matrix Operation
1. **Identify Rows**:
   - \(R_1\) = [1, 4, 5]
   - \(R_2\) = [-7, 2, -1]
   - \(R_3\) = [9, 7, 0]

2. **Perform the Operation**:
   - Replace \(R_2\) with the result of \(7R_1 + R_2\).
   - Calculate \(7R_1\):
     \[
     7 \times R_1 = [7 \times 1, 7 \times 4, 7 \times 5] = [7, 28, 35]
     \]
   - Add this to \(R_2\):
     \[
     [7, 28, 35] + [-7, 2, -1] = [0, 30, 34]
     \]

3. **Resulting Matrix**:
   \[
   \begin{bmatrix}
   1 & 4 & 5 \\
   0 & 30 & 34 \\
   9 & 7 & 0
   \end{bmatrix}
   \]

### Conclusion
The matrix after applying the transformation \(7R_1 + R_2\) to \(R_2\) is:
\[
\begin{bmatrix}
1 & 4 & 5 \\
0 & 30 & 34 \\
9 & 7 & 0
\end{bmatrix}
\]
Transcribed Image Text:### Row Transformation of a Matrix #### Task Use the specified row transformation to change the given matrix using the operation \(7R_1 + R_2\). #### Given Matrix \[ \begin{bmatrix} 1 & 4 & 5 \\ -7 & 2 & -1 \\ 9 & 7 & 0 \end{bmatrix} \] #### Row Transformation - Apply the transformation \(7R_1 + R_2\) to the matrix. #### Matrix Operation 1. **Identify Rows**: - \(R_1\) = [1, 4, 5] - \(R_2\) = [-7, 2, -1] - \(R_3\) = [9, 7, 0] 2. **Perform the Operation**: - Replace \(R_2\) with the result of \(7R_1 + R_2\). - Calculate \(7R_1\): \[ 7 \times R_1 = [7 \times 1, 7 \times 4, 7 \times 5] = [7, 28, 35] \] - Add this to \(R_2\): \[ [7, 28, 35] + [-7, 2, -1] = [0, 30, 34] \] 3. **Resulting Matrix**: \[ \begin{bmatrix} 1 & 4 & 5 \\ 0 & 30 & 34 \\ 9 & 7 & 0 \end{bmatrix} \] ### Conclusion The matrix after applying the transformation \(7R_1 + R_2\) to \(R_2\) is: \[ \begin{bmatrix} 1 & 4 & 5 \\ 0 & 30 & 34 \\ 9 & 7 & 0 \end{bmatrix} \]
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning