(j) 5″ n! π

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Only part j please!

**Exercise: Monotonic Sequences**

**Question:**

Which of the following sequences are eventually monotone (or strictly) increasing (or decreasing)? Justify your answers, assuming the usual properties of trigonometric functions where necessary.

**Sequences:**

(a) \(\left\{\frac{(-1)^n}{n}\right\}\)

(b) \(\left\{n - \frac{1}{n}\right\}\)

(c) \(\left\{n + \left(\frac{(-1)^n}{n}\right)\right\}\)

(d) \(\left\{n^2 - 10n + 100\right\}\)

(e) \(\left\{2 + (-1)^n\right\}\)

(f) \(\left\{\frac{3n^2 + (-1)^n}{n}\right\}\)

(g) \(\left\{\sin \frac{n\pi}{2}\right\}\)

(h) \(\left\{\sin n\pi\right\}\)

(i) \(\left\{\frac{n}{2n}\right\}\)

(j) \(\left\{\frac{5^n}{n!}\right\}\)

(k) \(\left\{\cos \frac{\pi}{2n}\right\}\)

(l) \(\left\{\sin \frac{\pi}{3n}\right\}\)

(m) \(\left\{\frac{3n + 5}{n^2 - n - 2}\right\}\)

(n) \(\left\{\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right\}\)
Transcribed Image Text:**Exercise: Monotonic Sequences** **Question:** Which of the following sequences are eventually monotone (or strictly) increasing (or decreasing)? Justify your answers, assuming the usual properties of trigonometric functions where necessary. **Sequences:** (a) \(\left\{\frac{(-1)^n}{n}\right\}\) (b) \(\left\{n - \frac{1}{n}\right\}\) (c) \(\left\{n + \left(\frac{(-1)^n}{n}\right)\right\}\) (d) \(\left\{n^2 - 10n + 100\right\}\) (e) \(\left\{2 + (-1)^n\right\}\) (f) \(\left\{\frac{3n^2 + (-1)^n}{n}\right\}\) (g) \(\left\{\sin \frac{n\pi}{2}\right\}\) (h) \(\left\{\sin n\pi\right\}\) (i) \(\left\{\frac{n}{2n}\right\}\) (j) \(\left\{\frac{5^n}{n!}\right\}\) (k) \(\left\{\cos \frac{\pi}{2n}\right\}\) (l) \(\left\{\sin \frac{\pi}{3n}\right\}\) (m) \(\left\{\frac{3n + 5}{n^2 - n - 2}\right\}\) (n) \(\left\{\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right\}\)
Expert Solution
Step 1q

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,