> > > Binomial Probability Sums b(z;n,p) 1-0 P 0.20 15 2 0.8159 0.3980 0.2361 3 0.9444 0.6482 0.4613 4 12 " 0.10 0.25 0.30 0.40 0.50 0 0.2059 0.0352 0.0134 0.0047 0.0005 0.0000 1 0.5490 0.1671 0.0802 0.0353 0.0052 0.0005 0.0000 0.1268 0.0271 0.0037 0.0003 0.0000 0.2969 0.0905 0.0176 0.0019 0.0001 0.5155 0.2173 0.0592 0.0093 0.0007 0.60 0.70 0.80 0.90 0.0000 5 0.1509 0.0338 0.0037 0.0001 6 0.9873 0.8358 0.6865 0.9978 0.9389 0.8516 0.7216 0.4032 0.9997 0.9819 0.9434 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008 7 1.0000 0.9958 0.9827 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.0000 0.9992 0.9958 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.0003 0.9999 0.9992 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022 1.0000 0.9999 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127 1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556 1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 0.1841 1.0000 0.9995 0.9948 0.9647 0.8329 0.4510 1.0000 0.9995 0.9953 0.9648 0.7941 1.0000 1.0000 1.0000 1.0000 8 9 10 11 12 13 14 15 16 0 0.1853 1 0.0281 0.0100 0.0033 0.0003 0.0000 0.5147 0.1407 0.0635 0.0261 0.0033 0.0003 0.0000 2 0.7892 0.3518 0.1971 0.0994 0.0183 0.0021 0.0001 0.9316 0.5981 0.4050 0.2459 0.0651 0.0106 0.0009 0.0000 Binomial Probability Sums b(x;n,p) P " " 0.10 0.20 0.25 0.30 0.40 0.50 12 0 0.2824 1 0.0687 0.0317 0.0138 0.0022 0.0002 0.6590 0.2749 0.1584 0.0850 0.0196 0.0032 0.60 0.70 0.0000 0.80 0.90 2 0.8891 0.5583 0.3907 0.2528 0.0834 0.0193 3 4 0.9744 0.7946 0.6488 0.4925 0.2253 0.9957 0.9274 0.8424 0.7237 0.4382 5 0.9995 0.9806 0.9456 6 0.9999 0.9961 0.9857 7 0.8822 0.9614 0.9905 8 9 10 1.0000 11 12 0.0003 0.0000 0.0028 0.0002 0.0000 0.0153 0.0017 0.0001 0.0573 0.0095 0.0006 0.0000 0.1582 0.0386 0.0039 0.0001 0.3348 0.1178 0.0194 0.0005 1.0000 0.9994 0.9972 0.2763 0.0726 0.0043 0.9999 0.9996 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256 1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410 1.0000 0.9998 0.9978 0.9313 0.7176 0.9862 1.0000 1.0000 1.0000 1.0000 1.0000 0.0730 0.1938 0.6652 0.3872 0.8418 0.6128 0.9427 0.8062 0.5618 1 2 3 13 0 0.2542 0.0550 0.0238 0.0097 0.0013 0.0001 0.0000 0.6213 0.2336 0.1267 0.0637 0.0126 0.0017 0.0001 0.0000 0.8661 0.5017 0.3326 0.2025 0.0579 0.0112 0.0013 0.0001 0.9658 0.7473 0.5843 0.4206 0.1686 0.0461 4 0.9935 0.9009 0.7940 5 0.9991 0.9700 0.9198 6 0.9999 0.9930 0.9757 7 1.0000 8 9 10 11 12 13 14 0 0.2288 0.0440 0.0178 1 0.5846 0.1979 0.1010 2 0.8416 0.4481 3 0.9559 0.6982 0.6543 0.3530 0.1334 0.8346 0.5744 0.2905 0.0078 0.0007 0.0000 0.0321 0.0040 0.0002 0.0977 0.0182 0.0012 0.0000 0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001 0.9988 0.9944 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009 0.9998 0.9990 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065 1.0000 0.9999 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342 1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339 1.0000 0.9999 0.9983 0.9874 0.9363 0.7664 0.3787 1.0000 0.9999 0.9987 0.9903 0.9450 0.7458 1.0000 1.0000 1.0000 1.0000 1.0000 0.0068 0.0008 0.0001 0.0000 0.0475 0.0081 0.0009 0.0001 0.2811 0.1608 0.0398 0.0065 0.0006 0.0000 0.5213 0.3552 0.1243 0.0287 0.0039 0.0002 0.0000 0.0002 0.0015 4 0.9908 0.8702 0.7415 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000 5 0.9985 0.9561 0.8883 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004 0.9884 0.9617 0.3953 0.0024 0.9998 0.9067 0.6925 0.1501 0.0315 1.0000 0.9976 0.9897 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.9996 0.9978 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 1.0000 0.9997 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092 1.0000 0.9998 0.9961 0.9713 0.8757 0.6448 0.3018 0.0441 1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.1584 0.9999 0.9991 0.9919 0.9525 0.8021 0.4154 1.0000 0.9999 0.9992 0.9932 0,9560 0.7712 1.0000 1.0000 1.0000 1.0000 1.0000 6 7 8 9 10 11 12 13 14 " 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 95.5% | -| - C 3 4 0.9830 0.7982 0.6302 0.4499 0.1666 0.0384 0.0049 0.0003 5 0.9967 0.9183 0.8103 0.6598 0.3288 0.1051 0.0191 0.0016 0.0000 7 8 9 10 11 12 13 14 15 16 12 " 0.10 0.20 0.25 0.30 0.40 6 0.9995 0.9733 0.9204 0.8247 0.5272 0.2272 0.0583 0.0071 0.0002 0.9999 0.9930 0.9729 0.9256 0.7161 0.4018 0.1423 0.0257 0.0015 0.0000 1.0000 0.9985 0.9925 0.9743 0.8577 0.0070 0.5982 0.2839 0.0744 0.0001 0.9998 0.9984 0.9929 0.9417 0.7728 0.4728 0.1753 0.0267 0.0005 1.0000 0.9997 0.9984 0.9809 0.8949 0.6712 0.3402 0.0817 0.0033 1.0000 0.9997 0.9951 0.9616 0.8334 0.5501 0.2018 0.0170 1.0000 0.9991 0.9894 0.9349 0.7541 0.4019 0.0684 0.9999 0.9979 0.9817 0.9006 0.6482 0.2108 1.0000 0.9997 0.9967 0.9739 0.8593 0.4853 1.0000 0.9997 0.9967 0.9719 0.8147 1.0000 1.0000 1.0000 1.0000 0.70 0.80 0.90 0.50 0.60 It is estimated that 4800 of the 16,000 voting residents of a town are against a new sales tax. If 14 eligible voters are selected at random and asked their opinion, what is the probability that at most 6 favor the new tax? Click here to view page 1 of the table of binomial probability sums. Click here to view page 2 of the table of binomial probability sums. The probability that at most 6 favor the new tax is (Round to four decimal places as needed.)
> > > Binomial Probability Sums b(z;n,p) 1-0 P 0.20 15 2 0.8159 0.3980 0.2361 3 0.9444 0.6482 0.4613 4 12 " 0.10 0.25 0.30 0.40 0.50 0 0.2059 0.0352 0.0134 0.0047 0.0005 0.0000 1 0.5490 0.1671 0.0802 0.0353 0.0052 0.0005 0.0000 0.1268 0.0271 0.0037 0.0003 0.0000 0.2969 0.0905 0.0176 0.0019 0.0001 0.5155 0.2173 0.0592 0.0093 0.0007 0.60 0.70 0.80 0.90 0.0000 5 0.1509 0.0338 0.0037 0.0001 6 0.9873 0.8358 0.6865 0.9978 0.9389 0.8516 0.7216 0.4032 0.9997 0.9819 0.9434 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008 7 1.0000 0.9958 0.9827 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.0000 0.9992 0.9958 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.0003 0.9999 0.9992 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022 1.0000 0.9999 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127 1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556 1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 0.1841 1.0000 0.9995 0.9948 0.9647 0.8329 0.4510 1.0000 0.9995 0.9953 0.9648 0.7941 1.0000 1.0000 1.0000 1.0000 8 9 10 11 12 13 14 15 16 0 0.1853 1 0.0281 0.0100 0.0033 0.0003 0.0000 0.5147 0.1407 0.0635 0.0261 0.0033 0.0003 0.0000 2 0.7892 0.3518 0.1971 0.0994 0.0183 0.0021 0.0001 0.9316 0.5981 0.4050 0.2459 0.0651 0.0106 0.0009 0.0000 Binomial Probability Sums b(x;n,p) P " " 0.10 0.20 0.25 0.30 0.40 0.50 12 0 0.2824 1 0.0687 0.0317 0.0138 0.0022 0.0002 0.6590 0.2749 0.1584 0.0850 0.0196 0.0032 0.60 0.70 0.0000 0.80 0.90 2 0.8891 0.5583 0.3907 0.2528 0.0834 0.0193 3 4 0.9744 0.7946 0.6488 0.4925 0.2253 0.9957 0.9274 0.8424 0.7237 0.4382 5 0.9995 0.9806 0.9456 6 0.9999 0.9961 0.9857 7 0.8822 0.9614 0.9905 8 9 10 1.0000 11 12 0.0003 0.0000 0.0028 0.0002 0.0000 0.0153 0.0017 0.0001 0.0573 0.0095 0.0006 0.0000 0.1582 0.0386 0.0039 0.0001 0.3348 0.1178 0.0194 0.0005 1.0000 0.9994 0.9972 0.2763 0.0726 0.0043 0.9999 0.9996 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256 1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410 1.0000 0.9998 0.9978 0.9313 0.7176 0.9862 1.0000 1.0000 1.0000 1.0000 1.0000 0.0730 0.1938 0.6652 0.3872 0.8418 0.6128 0.9427 0.8062 0.5618 1 2 3 13 0 0.2542 0.0550 0.0238 0.0097 0.0013 0.0001 0.0000 0.6213 0.2336 0.1267 0.0637 0.0126 0.0017 0.0001 0.0000 0.8661 0.5017 0.3326 0.2025 0.0579 0.0112 0.0013 0.0001 0.9658 0.7473 0.5843 0.4206 0.1686 0.0461 4 0.9935 0.9009 0.7940 5 0.9991 0.9700 0.9198 6 0.9999 0.9930 0.9757 7 1.0000 8 9 10 11 12 13 14 0 0.2288 0.0440 0.0178 1 0.5846 0.1979 0.1010 2 0.8416 0.4481 3 0.9559 0.6982 0.6543 0.3530 0.1334 0.8346 0.5744 0.2905 0.0078 0.0007 0.0000 0.0321 0.0040 0.0002 0.0977 0.0182 0.0012 0.0000 0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001 0.9988 0.9944 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009 0.9998 0.9990 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065 1.0000 0.9999 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342 1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339 1.0000 0.9999 0.9983 0.9874 0.9363 0.7664 0.3787 1.0000 0.9999 0.9987 0.9903 0.9450 0.7458 1.0000 1.0000 1.0000 1.0000 1.0000 0.0068 0.0008 0.0001 0.0000 0.0475 0.0081 0.0009 0.0001 0.2811 0.1608 0.0398 0.0065 0.0006 0.0000 0.5213 0.3552 0.1243 0.0287 0.0039 0.0002 0.0000 0.0002 0.0015 4 0.9908 0.8702 0.7415 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000 5 0.9985 0.9561 0.8883 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004 0.9884 0.9617 0.3953 0.0024 0.9998 0.9067 0.6925 0.1501 0.0315 1.0000 0.9976 0.9897 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.9996 0.9978 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 1.0000 0.9997 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092 1.0000 0.9998 0.9961 0.9713 0.8757 0.6448 0.3018 0.0441 1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.1584 0.9999 0.9991 0.9919 0.9525 0.8021 0.4154 1.0000 0.9999 0.9992 0.9932 0,9560 0.7712 1.0000 1.0000 1.0000 1.0000 1.0000 6 7 8 9 10 11 12 13 14 " 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 95.5% | -| - C 3 4 0.9830 0.7982 0.6302 0.4499 0.1666 0.0384 0.0049 0.0003 5 0.9967 0.9183 0.8103 0.6598 0.3288 0.1051 0.0191 0.0016 0.0000 7 8 9 10 11 12 13 14 15 16 12 " 0.10 0.20 0.25 0.30 0.40 6 0.9995 0.9733 0.9204 0.8247 0.5272 0.2272 0.0583 0.0071 0.0002 0.9999 0.9930 0.9729 0.9256 0.7161 0.4018 0.1423 0.0257 0.0015 0.0000 1.0000 0.9985 0.9925 0.9743 0.8577 0.0070 0.5982 0.2839 0.0744 0.0001 0.9998 0.9984 0.9929 0.9417 0.7728 0.4728 0.1753 0.0267 0.0005 1.0000 0.9997 0.9984 0.9809 0.8949 0.6712 0.3402 0.0817 0.0033 1.0000 0.9997 0.9951 0.9616 0.8334 0.5501 0.2018 0.0170 1.0000 0.9991 0.9894 0.9349 0.7541 0.4019 0.0684 0.9999 0.9979 0.9817 0.9006 0.6482 0.2108 1.0000 0.9997 0.9967 0.9739 0.8593 0.4853 1.0000 0.9997 0.9967 0.9719 0.8147 1.0000 1.0000 1.0000 1.0000 0.70 0.80 0.90 0.50 0.60 It is estimated that 4800 of the 16,000 voting residents of a town are against a new sales tax. If 14 eligible voters are selected at random and asked their opinion, what is the probability that at most 6 favor the new tax? Click here to view page 1 of the table of binomial probability sums. Click here to view page 2 of the table of binomial probability sums. The probability that at most 6 favor the new tax is (Round to four decimal places as needed.)
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
100%
Please solve the attached question and round to four decimal places as needed thanks
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON