Ise the information in the table to find h'(a) at the giver h(x) = f(g(sin(x))); a = 0 x f(x) f'(x) g(x) g'(x) 2 7 2 -2 3 -1 3 -3 2 3 "(a) = 1. 6. 1. 6. 3. 1. 2.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Use the information in the table to find \( h'(a) \) at the given value of \( a \).

\[ h(x) = f(g(\sin(x))); \quad a = 0 \]

\[
\begin{array}{|c|c|c|c|c|}
\hline
x & f(x) & f'(x) & g(x) & g'(x) \\
\hline
0 & 2 & 7 & 0 & 2 \\
\hline
1 & 1 & -2 & 3 & 0 \\
\hline
2 & 6 & 6 & 1 & -1 \\
\hline
3 & 3 & -3 & 2 & 3 \\
\hline
\end{array}
\]

\[ h'(a) = \]

**Explanation of the table:**

The table presents values for functions \( f(x) \), \( f'(x) \), \( g(x) \), and \( g'(x) \) at specific values of \( x \). The task is to compute \( h'(a) \) using these function values for the compound function \( h(x) = f(g(\sin(x))) \), where \( a = 0 \).

- **Column 1 (x):** Represents the x-values at which the function values are evaluated.
- **Column 2 (f(x)):** Lists the function values of \( f \) at each x-value.
- **Column 3 (f'(x)):** Lists the derivative values of \( f \) at each x-value.
- **Column 4 (g(x)):** Lists the function values of \( g \) at each x-value.
- **Column 5 (g'(x)):** Lists the derivative values of \( g \) at each x-value.

The goal is to determine \( h'(0) \) based on this information.
Transcribed Image Text:Use the information in the table to find \( h'(a) \) at the given value of \( a \). \[ h(x) = f(g(\sin(x))); \quad a = 0 \] \[ \begin{array}{|c|c|c|c|c|} \hline x & f(x) & f'(x) & g(x) & g'(x) \\ \hline 0 & 2 & 7 & 0 & 2 \\ \hline 1 & 1 & -2 & 3 & 0 \\ \hline 2 & 6 & 6 & 1 & -1 \\ \hline 3 & 3 & -3 & 2 & 3 \\ \hline \end{array} \] \[ h'(a) = \] **Explanation of the table:** The table presents values for functions \( f(x) \), \( f'(x) \), \( g(x) \), and \( g'(x) \) at specific values of \( x \). The task is to compute \( h'(a) \) using these function values for the compound function \( h(x) = f(g(\sin(x))) \), where \( a = 0 \). - **Column 1 (x):** Represents the x-values at which the function values are evaluated. - **Column 2 (f(x)):** Lists the function values of \( f \) at each x-value. - **Column 3 (f'(x)):** Lists the derivative values of \( f \) at each x-value. - **Column 4 (g(x)):** Lists the function values of \( g \) at each x-value. - **Column 5 (g'(x)):** Lists the derivative values of \( g \) at each x-value. The goal is to determine \( h'(0) \) based on this information.
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning