Is F1 = (yz + ex-y) i + (xz − e−)j+xyk a conservative vector field? If so, give its potential function; if not, explain why not. Is F2 = cos zi+sin zj - (y cos z + sin z) k a conservative vector field? If so, give its potential function; if not, explain why not. Of the two previous parts of this problem, exactly one should have been a conservative vector field. (If not, redo them.) Compute the integral Fi.dr where F; (either F1 or F2) is that conservative vector field, and C is the curve parameterized by r(t)=(t+sin 10t, -t + sin 10t, 10 - t2) where t = [−, π].
Is F1 = (yz + ex-y) i + (xz − e−)j+xyk a conservative vector field? If so, give its potential function; if not, explain why not. Is F2 = cos zi+sin zj - (y cos z + sin z) k a conservative vector field? If so, give its potential function; if not, explain why not. Of the two previous parts of this problem, exactly one should have been a conservative vector field. (If not, redo them.) Compute the integral Fi.dr where F; (either F1 or F2) is that conservative vector field, and C is the curve parameterized by r(t)=(t+sin 10t, -t + sin 10t, 10 - t2) where t = [−, π].
Is F1 = (yz + ex-y) i + (xz − e−)j+xyk a conservative vector field? If so, give its potential function; if not, explain why not. Is F2 = cos zi+sin zj - (y cos z + sin z) k a conservative vector field? If so, give its potential function; if not, explain why not. Of the two previous parts of this problem, exactly one should have been a conservative vector field. (If not, redo them.) Compute the integral Fi.dr where F; (either F1 or F2) is that conservative vector field, and C is the curve parameterized by r(t)=(t+sin 10t, -t + sin 10t, 10 - t2) where t = [−, π].
Is F1 = (yz + e^x−y)i + (xz − e^x−y)j + xy k a conservative vector field? If so, give its potential function; if not, explain why not. Is F2 = cos z i + sin z j − (y cos z + x sin z) k a conservative vector field? If so, give its potential function; if not, explain why not. Of the two previous parts of this problem, exactly one should have been a conservative vector field. (If not, redo them.) Compute the integral Z C Fi · dr where Fi (either F1 or F2) is that conservative vector field, and C is the curve parameterized by r(t) = (t + sin 10t, −t + sin 10t, 10 − t^2) where t ∈ [−π, π].
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.