Is d/s V 3H 102 Fig. 8 2 F ing 12.5mF

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
circuits, pleaseeeee solve questionnn12
The switch in Fig. 1 has been closed for long time. It opens at t=0. Please refer to the circuit of
Fig. 1 for the following questions (Q1, and Q2)
Q1) The time constant t can be found as:
a) 6.67 s b) 0.3 s
c) 10 s
d) 0.1 s
Q2) The current i(t) at t= 1m s is:
a) 2.02 A b) 6 A
c) 4.02 A
a) 1.23 cos(10t +30°) V
d) 2.25 cos(10t-53.6%) V
e) 0.15 s
d) 5.98 A e) 4 A
2cos101 V
b) 1.23 cos(10t-30°) V
e) 1.79 cos(10t -26.57°) V
20 400 40
www
HE
Refer to the circuit of Fig. 2 for the following 3 questions (Q3, Q4 and Q5)
Q3) By using superposition technique, the contribution of the 2cos10t voltage source to the value of
vi(t) is:
Q5) The value of the inductance of the j2 2 impedance is:
a) 0.2 H b) 10 H
c) 20 H d)1.6 H
e) 16 H
Q7) The current in(t) of Fig. 4 can be found as (mA):
a) 12.5cos(500t - 0.107°)
d) 12.5 cos(500t + 89.9°)
pa
Q6) Referring to the circuit of Fig. 3, Zin can be determined as:
a)22+j6Ω b)18+j6Ω c) 22-j6 Ω d) 18-j62 e)-18+j6 22
Q4) By applying KCL to the node v/(t), the value of the voltage labeled v/(t) is (V):
a) 2.86 cos(10t +77.9°)
b) 2.86 cos(10t-77.9°)
d) 4.1 cos(10t-62.3°)
c) 4.1 cos(10t +62.3°)
f) 3.92 cos(10t-77.9°)
e) 3.92 cos(10t +77.9°)
5923
5 cos 10rv
b) 12.5cos(500t+ 0.107°)
e) 12.5 cos(500t+ 0.205°)
20:2
-ww
c) 2.25 cos(10t +53.6°) V
f) 1.79 cos(10t+26.57°) V
10.0
ww
T
-
2 -15.02
1=0
1.5 H
m
Q9) The complex power absorbed by voltage source is (VA)
b)-751.3-j457. c)-823.5+j294.1
a) -823.5-j294.1
d) -751.3+j457.7
e) 751.3-j457.7
Fig. 1
102 cos5001 V
Fig. 2
Fig. 3
Refer to the circuit of Fig. 5 for the following 2 questions (Q8, and Q9)
Q8) The current through the-j10 2 can be found as (A rms)
a) 8.75/19.65*
b) 8.75-19.65*
c) 10.25/90*
d) 10.25Z-90°
e) 202-53.26
f) 20253.26
c) 12.5cos(500t - 89.9°)
f) 12.5 cos(500t - 0.205°)
10Ω (1) 6A
100/0° V ms
10042
www
0.2 i
Fig. 4
–ΠΟΥ
Fig. 5
31
2002
0.3mH
200
ww
100
Transcribed Image Text:The switch in Fig. 1 has been closed for long time. It opens at t=0. Please refer to the circuit of Fig. 1 for the following questions (Q1, and Q2) Q1) The time constant t can be found as: a) 6.67 s b) 0.3 s c) 10 s d) 0.1 s Q2) The current i(t) at t= 1m s is: a) 2.02 A b) 6 A c) 4.02 A a) 1.23 cos(10t +30°) V d) 2.25 cos(10t-53.6%) V e) 0.15 s d) 5.98 A e) 4 A 2cos101 V b) 1.23 cos(10t-30°) V e) 1.79 cos(10t -26.57°) V 20 400 40 www HE Refer to the circuit of Fig. 2 for the following 3 questions (Q3, Q4 and Q5) Q3) By using superposition technique, the contribution of the 2cos10t voltage source to the value of vi(t) is: Q5) The value of the inductance of the j2 2 impedance is: a) 0.2 H b) 10 H c) 20 H d)1.6 H e) 16 H Q7) The current in(t) of Fig. 4 can be found as (mA): a) 12.5cos(500t - 0.107°) d) 12.5 cos(500t + 89.9°) pa Q6) Referring to the circuit of Fig. 3, Zin can be determined as: a)22+j6Ω b)18+j6Ω c) 22-j6 Ω d) 18-j62 e)-18+j6 22 Q4) By applying KCL to the node v/(t), the value of the voltage labeled v/(t) is (V): a) 2.86 cos(10t +77.9°) b) 2.86 cos(10t-77.9°) d) 4.1 cos(10t-62.3°) c) 4.1 cos(10t +62.3°) f) 3.92 cos(10t-77.9°) e) 3.92 cos(10t +77.9°) 5923 5 cos 10rv b) 12.5cos(500t+ 0.107°) e) 12.5 cos(500t+ 0.205°) 20:2 -ww c) 2.25 cos(10t +53.6°) V f) 1.79 cos(10t+26.57°) V 10.0 ww T - 2 -15.02 1=0 1.5 H m Q9) The complex power absorbed by voltage source is (VA) b)-751.3-j457. c)-823.5+j294.1 a) -823.5-j294.1 d) -751.3+j457.7 e) 751.3-j457.7 Fig. 1 102 cos5001 V Fig. 2 Fig. 3 Refer to the circuit of Fig. 5 for the following 2 questions (Q8, and Q9) Q8) The current through the-j10 2 can be found as (A rms) a) 8.75/19.65* b) 8.75-19.65* c) 10.25/90* d) 10.25Z-90° e) 202-53.26 f) 20253.26 c) 12.5cos(500t - 89.9°) f) 12.5 cos(500t - 0.205°) 10Ω (1) 6A 100/0° V ms 10042 www 0.2 i Fig. 4 –ΠΟΥ Fig. 5 31 2002 0.3mH 200 ww 100
2A (4)
le
4.8 2
am
Q12) Neper frequency a is
a) 4 rad/s b) 16 rad/s c) 25 rad/s d) 2 rad/s e) 5 rad/s
Q13) Resonant frequency o is
a) 4 rad/s b) 5 rad/s
c) 4 rad/s
d) 16 rad/s e) 25 rad/s
Q14) The voltage v (t=1s) can be found as
a) 10.61 V b) 14.61 V c) 16.61 V d) 8.61 V e) 12.61 V
a) R=0.202, C=0.2 F
d) R=102, C=1F
m
1.92 02
34
L
m
L
Fig. 6
Fig.7
Q10) The average power supplied by the dependent source of Fig. 6 can be determined as
d) 192 W
a) 5W
b) 24 W
c) 96 W
c) 48W
Q11) The Va for the the circuit shown in Fig. 7 as seen from the terminal a-b can be found as:
a)-/220 V
d)-110 V )-/165 V
c)-j55 V
b)-/330 V
Please refer to the circuit of Fig. 8 for the following questions (Q12, Q13 and Q14). Assuming
it(0)-8 A, and V.(0)-40 V.
T
1.61, 80
30
34
L
m
Z
Fig. 9
Q15) For the circuit shown in Fig. 9, the equivalent inductance Leq is:
a) 1/2 L
d) 5/8 L e) 4/7 L
b) 4/9 L
c) 7/4 L
Q19) For the circuit shown in Fig. 11, the value of C needed to
make the response underdamped with unity damping factor (a
= 1) is:
1520 A
e) 24 V
e) 15 V
SH
6 MA
24 V +
14
3k0z
www
402
-NN
20
+49
ΣΕΩΣ
ΔΩΣ
t=0
3kQ2
Fig. 8
2mF
HF
2102
ww
J30
400
Q16) For the circuit shown in Fig. 10, the energy stored in the 4 mF capacitor under de conditions is:
a) 32 mJ
d) 8 mJ e) 16 mJ
b) 128 mJ
c) 256 mJ
Q17) If v(t)=15 cos(1000t+66°) V and i(t)=2cos(1000t+450°) A, then v(t) leads i(t) by
a) 156°
b)-24°
c) 204°
d) 24°
e) 66°
Q18) Assuming that the input impedance is given as Zin= 1+j1 02 and co-1 rad/s, then the input
admittance can be represented as the parallel combination of:
b) R=0.2 02, L=0.2 H
e) R=202, L=2H
c) R=10, L=1H
Fig. 10
+
100 0.5H C= 10 mF
SKΩ Σ
4 m² =
a) 40 mF b) 15 mF c) 26 mF d) 2.5 mF e) 7.5 mF
The switch in Fig. 12 has been in position A for long time. At t=0, the switch moves to position B.
Please refer to the circuit of Fig. 12 for the following questions (Q20, Q21 and Q22)
Fig. 11
Q20) v(0) can be found as:
a)30 V b) 12.5 V c) 9V
d) 15 V
Q21) v(co) can be found as:
a) 24 V
b)30 V c) 12.5 V d) 9 V
Q22) The voltage v(t) at t = 1 s is:
a) 20.9 V
b)24.9 V
c) 30 V
d) 39.1 V e) 27.97 V
Fig. 12
12.5mFv
04
B
4kQ
co www
9.51,
P0.5 mF
b
410
30 V
Transcribed Image Text:2A (4) le 4.8 2 am Q12) Neper frequency a is a) 4 rad/s b) 16 rad/s c) 25 rad/s d) 2 rad/s e) 5 rad/s Q13) Resonant frequency o is a) 4 rad/s b) 5 rad/s c) 4 rad/s d) 16 rad/s e) 25 rad/s Q14) The voltage v (t=1s) can be found as a) 10.61 V b) 14.61 V c) 16.61 V d) 8.61 V e) 12.61 V a) R=0.202, C=0.2 F d) R=102, C=1F m 1.92 02 34 L m L Fig. 6 Fig.7 Q10) The average power supplied by the dependent source of Fig. 6 can be determined as d) 192 W a) 5W b) 24 W c) 96 W c) 48W Q11) The Va for the the circuit shown in Fig. 7 as seen from the terminal a-b can be found as: a)-/220 V d)-110 V )-/165 V c)-j55 V b)-/330 V Please refer to the circuit of Fig. 8 for the following questions (Q12, Q13 and Q14). Assuming it(0)-8 A, and V.(0)-40 V. T 1.61, 80 30 34 L m Z Fig. 9 Q15) For the circuit shown in Fig. 9, the equivalent inductance Leq is: a) 1/2 L d) 5/8 L e) 4/7 L b) 4/9 L c) 7/4 L Q19) For the circuit shown in Fig. 11, the value of C needed to make the response underdamped with unity damping factor (a = 1) is: 1520 A e) 24 V e) 15 V SH 6 MA 24 V + 14 3k0z www 402 -NN 20 +49 ΣΕΩΣ ΔΩΣ t=0 3kQ2 Fig. 8 2mF HF 2102 ww J30 400 Q16) For the circuit shown in Fig. 10, the energy stored in the 4 mF capacitor under de conditions is: a) 32 mJ d) 8 mJ e) 16 mJ b) 128 mJ c) 256 mJ Q17) If v(t)=15 cos(1000t+66°) V and i(t)=2cos(1000t+450°) A, then v(t) leads i(t) by a) 156° b)-24° c) 204° d) 24° e) 66° Q18) Assuming that the input impedance is given as Zin= 1+j1 02 and co-1 rad/s, then the input admittance can be represented as the parallel combination of: b) R=0.2 02, L=0.2 H e) R=202, L=2H c) R=10, L=1H Fig. 10 + 100 0.5H C= 10 mF SKΩ Σ 4 m² = a) 40 mF b) 15 mF c) 26 mF d) 2.5 mF e) 7.5 mF The switch in Fig. 12 has been in position A for long time. At t=0, the switch moves to position B. Please refer to the circuit of Fig. 12 for the following questions (Q20, Q21 and Q22) Fig. 11 Q20) v(0) can be found as: a)30 V b) 12.5 V c) 9V d) 15 V Q21) v(co) can be found as: a) 24 V b)30 V c) 12.5 V d) 9 V Q22) The voltage v(t) at t = 1 s is: a) 20.9 V b)24.9 V c) 30 V d) 39.1 V e) 27.97 V Fig. 12 12.5mFv 04 B 4kQ co www 9.51, P0.5 mF b 410 30 V
Expert Solution
Step 1

Electrical Engineering homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
RTD
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,