is continuous for each x E R. Hint: Consider cases x 0 and x = 0. . For x0: Use the definition of continouity. i) Take € > 0 and assume that y x < 8, then ii) Explain why iii) Use the formula |u sin() - zsin (-) = |usin () - sin (;) y y x y - zx|sin() iv) Explain why ƒ (x) = { vi) Show that vii) Show that viii) Take 6 = min {4, 4 x sin (¹) 0 |x - y sin sin (a) sin (3) = 2 sin |yx| |yx| |xy| y sin (₁) if x #0 if x=0 sin (-:-) -sin (-) |≤|-|-|-2| |yx| |xy| v) Notice that if 6 <2, then using Example from Lecture 14 (see page) 8 explain why |y| > 2 3 (-)|- - y sin • For x = 0: Need to show that lima sin() = = 0. < 0, then show that for x 0 and y - x < 8 (-:-) = 270 a + B 2 1226. |x/20. -8 + 8 < €.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please answer all subparts to show that it is continuous. Thanks

**5a. Continuity of Function \( f: \mathbb{R} \to \mathbb{R} \)**

**Function Definition:**
\[ 
f(x) = 
\begin{cases} 
x \sin \left( \frac{1}{x} \right) & \text{if } x \neq 0 \\
0 & \text{if } x = 0 
\end{cases} 
\]

We aim to demonstrate that \( f \) is continuous for each \( x \in \mathbb{R} \).

**Hint:** Consider the cases \( x \neq 0 \) and \( x = 0 \).

**Case \( x \neq 0 \):**
- Use the definition of continuity.
  1. Take \( \epsilon > 0 \) and assume that \( |y-x| < \delta \), then:

\[ 
\left| y \sin \left( \frac{1}{y} \right) - x \sin \left( \frac{1}{x} \right) \right| = \left| y \sin \left( \frac{1}{y} \right) - x \sin \left( \frac{1}{y} \right) + x \sin \left( \frac{1}{y} \right) - x \sin \left( \frac{1}{x} \right) \right| 
\]

\[ 
\leq |y-x| \left| \sin \left( \frac{1}{y} \right) \right| + |x-y| \left| \sin \left( \frac{1}{x} \right) \sin \left( \frac{1}{y} \right) \right| 
\]

  2. Explain why:

\[ 
|x-y| \left| \sin \left( \frac{1}{y} \right) \right| < \delta 
\]

  3. Use the formula:

\[ 
\sin(\alpha) - \sin(\beta) = 2 \sin \left( \frac{\alpha - \beta}{2} \right) \cos \left( \frac{\alpha + \beta}{2} \right) 
\]

  4. Explain why:

\[ 
\left| \sin \left(
Transcribed Image Text:**5a. Continuity of Function \( f: \mathbb{R} \to \mathbb{R} \)** **Function Definition:** \[ f(x) = \begin{cases} x \sin \left( \frac{1}{x} \right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] We aim to demonstrate that \( f \) is continuous for each \( x \in \mathbb{R} \). **Hint:** Consider the cases \( x \neq 0 \) and \( x = 0 \). **Case \( x \neq 0 \):** - Use the definition of continuity. 1. Take \( \epsilon > 0 \) and assume that \( |y-x| < \delta \), then: \[ \left| y \sin \left( \frac{1}{y} \right) - x \sin \left( \frac{1}{x} \right) \right| = \left| y \sin \left( \frac{1}{y} \right) - x \sin \left( \frac{1}{y} \right) + x \sin \left( \frac{1}{y} \right) - x \sin \left( \frac{1}{x} \right) \right| \] \[ \leq |y-x| \left| \sin \left( \frac{1}{y} \right) \right| + |x-y| \left| \sin \left( \frac{1}{x} \right) \sin \left( \frac{1}{y} \right) \right| \] 2. Explain why: \[ |x-y| \left| \sin \left( \frac{1}{y} \right) \right| < \delta \] 3. Use the formula: \[ \sin(\alpha) - \sin(\beta) = 2 \sin \left( \frac{\alpha - \beta}{2} \right) \cos \left( \frac{\alpha + \beta}{2} \right) \] 4. Explain why: \[ \left| \sin \left(
Expert Solution
Step 1: Recall the definition of continouity and a theorem.

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 8 steps with 8 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,