Introduction to Quantum Mechanics How to solve for P(2) to P(5)?

icon
Related questions
Question
Introduction to Quantum Mechanics How to solve for P(2) to P(5)?
Po=1
P₁ = x
P₂ = 1/2 (3x²-1)
P3=-1-(5x³-3x)
P4=(35x² 30x²+3)
P₁= -(63x³-70x³+15x)
P5
Transcribed Image Text:Po=1 P₁ = x P₂ = 1/2 (3x²-1) P3=-1-(5x³-3x) P4=(35x² 30x²+3) P₁= -(63x³-70x³+15x) P5
and P(x) is the lth Legendre polynomial, defined by the Rodrigues formula:
l
1 d
2/²0 (1) ² (x² - 1) ².
2⁰ l! dx
For example,
Pe(x) =
Po(x) = 1,
P₁(x)=
d
= 1 / ² (x² - 1) = x₁
2 dx
2
1 d
1
12.00 - (-)² (2²-1)² - (32²-1)
(x)
=
=
1/2
4.2
dx
(4.28)
Transcribed Image Text:and P(x) is the lth Legendre polynomial, defined by the Rodrigues formula: l 1 d 2/²0 (1) ² (x² - 1) ². 2⁰ l! dx For example, Pe(x) = Po(x) = 1, P₁(x)= d = 1 / ² (x² - 1) = x₁ 2 dx 2 1 d 1 12.00 - (-)² (2²-1)² - (32²-1) (x) = = 1/2 4.2 dx (4.28)
Expert Solution
steps

Step by step

Solved in 3 steps with 4 images

Blurred answer