Interval Estimation for a Binomial Proportion. This simulation will compare two different interval estimators for an unknown binomial proportion - a notoriously difficult and interesting problem. Consider observing n iid realizations from the following data generating process (DGP) X1, X2, n iid Xnd Ber(p) i=1 Consider estimator p EX₁. To form an interval estimator, recall that √(p-p) A √Var[X] N(0, 1) by the CLT. Thus, asymptotically P{%a/2 ≤ √(-) ≤ 21-1/a} = 1-a. Here, %, is the √Var[X] v-th percentile of the standard normal. Solving the inner inequality for p yields a (1-a)100% confidence interval for p. The Wald interval estimator does this inversion and estimates Var[X] by plugging in p wherever p appears in the expression for Var[X]. The Agresti-Coull interval "adds 2 success in 4 trials" and computes an interval using p = (2+1 X;), where ñ= n +4 (a) For a = .05, solve the inner inequality of P{2.025 ≤ √(1-1) ≤ 2.975} = .95 to obtain an √Var[X] interval that (claims to) contain p with 95% probability. Show that it has the form p(1 − p) n p±2.9751 The Wald interval by plugging in p: p±2.975 √p(1-P)/n
Interval Estimation for a Binomial Proportion. This simulation will compare two different interval estimators for an unknown binomial proportion - a notoriously difficult and interesting problem. Consider observing n iid realizations from the following data generating process (DGP) X1, X2, n iid Xnd Ber(p) i=1 Consider estimator p EX₁. To form an interval estimator, recall that √(p-p) A √Var[X] N(0, 1) by the CLT. Thus, asymptotically P{%a/2 ≤ √(-) ≤ 21-1/a} = 1-a. Here, %, is the √Var[X] v-th percentile of the standard normal. Solving the inner inequality for p yields a (1-a)100% confidence interval for p. The Wald interval estimator does this inversion and estimates Var[X] by plugging in p wherever p appears in the expression for Var[X]. The Agresti-Coull interval "adds 2 success in 4 trials" and computes an interval using p = (2+1 X;), where ñ= n +4 (a) For a = .05, solve the inner inequality of P{2.025 ≤ √(1-1) ≤ 2.975} = .95 to obtain an √Var[X] interval that (claims to) contain p with 95% probability. Show that it has the form p(1 − p) n p±2.9751 The Wald interval by plugging in p: p±2.975 √p(1-P)/n
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman