Integral fracionária de Riemann-Liouville (5) Considere a integral fracionária de Riemann-Lioville e a e C com Re(a) > 0 dada por 1 (I = f(x)) = F(a) Sa² 1 f(T) (x-7)¹-a b f(T) (Ig-f(x)) := F(a) √² (7-2) l-a e mostre que: г(B) a) (Za (ta)-1) (x): = I dT, para xa dT, para 0; г(B) b) (Zg-(b−t)³-1) (x) = F(B+a) (b-x)+a-1, em que Re(a) > 0. (6) Considere a integral fracionária no sentido de Riemann-Lioville e a, ẞe C com Re(a) > 0 e Re(B) > 0 para mostrar que: (To ₁+ t³-1) (x) = г(B) г(ẞ+α) +α-1 (7) Considere a integral fracionária no sentido de Riemann-Lioville e a, ẞe C com Re(a) > 0 e Re(a + B) < 1 para mostrar que: (To t³-1) (x) = T(1-a-3)+a-1 F(1-3) (8) Mostre que a propriedade de semigrupo associada à integral fracionária à direita, isto é, aTº I f(x) = a+³ f(x), para a, ẞ20 e a
Integral fracionária de Riemann-Liouville (5) Considere a integral fracionária de Riemann-Lioville e a e C com Re(a) > 0 dada por 1 (I = f(x)) = F(a) Sa² 1 f(T) (x-7)¹-a b f(T) (Ig-f(x)) := F(a) √² (7-2) l-a e mostre que: г(B) a) (Za (ta)-1) (x): = I dT, para xa dT, para 0; г(B) b) (Zg-(b−t)³-1) (x) = F(B+a) (b-x)+a-1, em que Re(a) > 0. (6) Considere a integral fracionária no sentido de Riemann-Lioville e a, ẞe C com Re(a) > 0 e Re(B) > 0 para mostrar que: (To ₁+ t³-1) (x) = г(B) г(ẞ+α) +α-1 (7) Considere a integral fracionária no sentido de Riemann-Lioville e a, ẞe C com Re(a) > 0 e Re(a + B) < 1 para mostrar que: (To t³-1) (x) = T(1-a-3)+a-1 F(1-3) (8) Mostre que a propriedade de semigrupo associada à integral fracionária à direita, isto é, aTº I f(x) = a+³ f(x), para a, ẞ20 e a
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please calculate
Show-me pass-to-pass
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 12 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,