Instructions: • Write your solutions and answers clearly and legibly on any paper. . Do not use pencil. A. Let A = {-2,-1,0,1,2), B = {1,2,5}, C = {n² ER:n e A}. For items (1)-(4), write TRUE if the statement below is true, write FALSE otherwise. (1) (2) (3) (4) Statement: -2 A. Statement: BCA. - The statement "For every natural number n, n is positive" is equivalent to Vn € N, n ≥ 0. . The statement "If x² = 9, then x=3 or r=-3" is a conditional statement. For iteme (5)-(9) define a relation R from 4 to R as follows: Given any (1) AVR pm (

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Instructions:
.Write your solutions and answers clearly and legibly on any paper.
. Do not use pencil.
A. Let A = {-2,-1,0,1,2}, B = {1,2,5}, C = {n² € R:n € A}.
For items (1)-(4), write TRUE if the statement below is true, write FALSE otherwise.
(1)
(2)
(3)
Statement: -2 € A.
Statement: BC A.
The statement "For every natural number n, n is positive" is equivalent to Vn € N, n ≥ 0.
The statement "If r² = 9, then r = 3 or x = -3" is a conditional statement.
For items (5)-(9), define a relation R from A to B as follows: Given any (x, y) = A x B₁
(x, y) = R iff y = 2² +1.
(5) State explicitly the elements of C (write set C in set-roster notation)
(6) State explicitly which ordered pairs are in Cartesian Product A x B.
(7) State explicitly which ordered pairs are in the relation R.
(8) What are the domain and co-domain of R?
(9) Is A x B C R? Why or why not?
B. Let N be the set of natural numbers, A = {(¹, , , , }, B = { ½ : 1 ≤ x ≤ 10, where a € N}.
(10) State explicitly the elements of the set B (write set B in set-roster notation).
(11) Write set A in set-builder notation (follow the format A = {z € X : P(x)}).
For items (12)-(14), Let the mapping F: N→ A be defined as F(x) = ¹.
(12) Evaluate F (10)
(13) Evaluate 100-F (5) - 20.
(14) Is the mapping F a function? Why or why not?
C. Negate the following statements and re-express the result in equivalent positive form: I have already tasted
all the items in the food menu.
D. Suppose is a binary operation from Zx N to Z defined by
m* n = m² + 2n.
Evaluate m * n if m= -7 and n = 10.
Transcribed Image Text:Instructions: .Write your solutions and answers clearly and legibly on any paper. . Do not use pencil. A. Let A = {-2,-1,0,1,2}, B = {1,2,5}, C = {n² € R:n € A}. For items (1)-(4), write TRUE if the statement below is true, write FALSE otherwise. (1) (2) (3) Statement: -2 € A. Statement: BC A. The statement "For every natural number n, n is positive" is equivalent to Vn € N, n ≥ 0. The statement "If r² = 9, then r = 3 or x = -3" is a conditional statement. For items (5)-(9), define a relation R from A to B as follows: Given any (x, y) = A x B₁ (x, y) = R iff y = 2² +1. (5) State explicitly the elements of C (write set C in set-roster notation) (6) State explicitly which ordered pairs are in Cartesian Product A x B. (7) State explicitly which ordered pairs are in the relation R. (8) What are the domain and co-domain of R? (9) Is A x B C R? Why or why not? B. Let N be the set of natural numbers, A = {(¹, , , , }, B = { ½ : 1 ≤ x ≤ 10, where a € N}. (10) State explicitly the elements of the set B (write set B in set-roster notation). (11) Write set A in set-builder notation (follow the format A = {z € X : P(x)}). For items (12)-(14), Let the mapping F: N→ A be defined as F(x) = ¹. (12) Evaluate F (10) (13) Evaluate 100-F (5) - 20. (14) Is the mapping F a function? Why or why not? C. Negate the following statements and re-express the result in equivalent positive form: I have already tasted all the items in the food menu. D. Suppose is a binary operation from Zx N to Z defined by m* n = m² + 2n. Evaluate m * n if m= -7 and n = 10.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,