Inorder to approach ideal PFR behavior, the flow must be turbulent. For example, with an open tube, the Reynolds number must be greater than 2100 for turbulence to occur. This flow regime is attainable in many practical situations. However, for laboratory reactors conduct- ing liquid-phase reactions, high flow rates may not be achievable. In this case, laminar flow will occur. Calculate the mean outlet concentration of a species A undergoing a first-order reaction in a tubular reactor with laminar flow and compare the value to that obtained in a PFR when (KL)/u= 1 (u= average linear flow velocity).
Inorder to approach ideal PFR behavior, the flow must be turbulent. For example, with an open tube, the Reynolds number must be greater than 2100 for turbulence to occur. This flow regime is attainable in many practical situations. However, for laboratory reactors conduct- ing liquid-phase reactions, high flow rates may not be achievable. In this case, laminar flow will occur. Calculate the mean outlet concentration of a species A undergoing a first-order reaction in a tubular reactor with laminar flow and compare the value to that obtained in a PFR when (KL)/u= 1 (u= average linear flow velocity).
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
Chemical Engineering
Inorder to approach ideal PFR behavior, the flow must be turbulent. For example, with an open tube, the Reynolds number must be greater than 2100 for turbulence to occur. This flow regime is attainable in many practical situations. However, for laboratory reactors conduct- ing liquid-phase reactions, high flow rates may not be achievable. In this case, laminar flow will occur. Calculate the mean outlet concentration of a species A undergoing a first-order reaction in a tubular reactor with laminar flow and compare the value to that obtained in a PFR when (KL)/u= 1 (u= average linear flow velocity).
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY

Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall

Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY

Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall


Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning

Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The