Initial Pressure (P) = 12 atm Initial volume (V₁) = 234 Initial temperenture (T₁) = 2500.0 306K Use the combined gas law to solve the following problems: 8) If I initially have a gas at a pressure if 12 atm, a volume of 23 liters, and a temperature of 200.0 K, and then I raise the pressure to 14 atm and increase the temperature to 300.0 K, what is the new volume of the gas? V₂ = Pivita V.P, MI atm x 234X3000K Pala Fa T₁. Pa 30. L (14 atm x 200.ok). T₁ 29/57142857 30.4 T. Pa 9) A gas takes up a volume of 17 liters, has a pressure of 2.3 atm, and a temperature of 299 K. If I raise the temperature to 350 K and lower the pressure to 1.5 atm, what is the new volume of the gas? = 172 initial pressure (P) = 2.3 atm Final Pressure (P₂) - 1.5 atm Final temperature (12) = 350 K initial temperature (T) 299k 30.5128205 L Final Pressure (Pa): 14atm Final volume (va) Initial temperature (1₂) P.V. - Pa Va Ta 31 L √₂-1/² x 18 ₂² Ideal Gas Law 1.Satm) 10) Calculate the pressure, in atmospheres, exerted by each of the following: a. 250 L of gas containing 1.35 moles at 320 K. PynrT mole n = 1.35 mole Temperature (1): 32ok P = nr I volume v= 250L Pressure (1): .14 atm P₁V₁12-23 atm) (172) X(350K) рахт, (299k) b. 4.75 L of gas containing 0.86 moles at 300, K. volume(v): 4.75L mole:0.86 malc Temperature: 300k Pressure: 4.5 atm V=4.75L 39.4 L P= nrT Va=312 R=0.0821 fatm mo! P= 4.459 atm T= 300k n = 0,86 mol R=0.082 La+mm (4.5 atm) 11) Calculate the volume, in liters, occupied by each of the following: a. 2.00 moles of H₂ at 300. K and 1.25 atm. 4 2.00 male X 0.0821 Latm mol K x 300k 1.25atm b. 0.425 moles of ammonia gas (NH3) at 0.724 atm and 37°C PV=nRT, V = nRÌ_n=0.425 mole atm = 1.35 mol x 0.0821 atm mol K²X 320k 250L P=0.14a+m) = 0.86m 1X0.0821 Latm mol¹k X300 k 4.75 L RT PV=nRT V=nRT P = 39.408 39.42 6.724 atm 12) Determine the number of moles contained in each of the following gas systems: T-376-37+273 k= 310k 14.9 L 0.425 mole (NH3) X 0.0821 Latm mol¹k'x (273+37) k. 7 14.940 15884 (14.92) a. 1.25 L of O₂ at 1.06 atm and 250. K PV=ART (1.06 atm x 1,25 L) n = PV 0.0821 Latm mot klx 250 K=1 .0646 moles -0.06455542.0646 moles b. 0.80 L of ammonia gas (NH3) at 0.925 atm and 27°C V0.80L 030 moles, 25 atm x 0.80L) P=1₁25atm に T= 300.K = 2,00lmole R=0.082(a+mk¹ mol's P=106 atm T=250.K V=1.25L R=0.0821 L. atm molk P=0,925 atm T=27°C= 21+ 273.15=300.15 0.08211atm. mol" K'x 300.15K = 0.030029646030 Mole PV = nRT n = PV RT
Initial Pressure (P) = 12 atm Initial volume (V₁) = 234 Initial temperenture (T₁) = 2500.0 306K Use the combined gas law to solve the following problems: 8) If I initially have a gas at a pressure if 12 atm, a volume of 23 liters, and a temperature of 200.0 K, and then I raise the pressure to 14 atm and increase the temperature to 300.0 K, what is the new volume of the gas? V₂ = Pivita V.P, MI atm x 234X3000K Pala Fa T₁. Pa 30. L (14 atm x 200.ok). T₁ 29/57142857 30.4 T. Pa 9) A gas takes up a volume of 17 liters, has a pressure of 2.3 atm, and a temperature of 299 K. If I raise the temperature to 350 K and lower the pressure to 1.5 atm, what is the new volume of the gas? = 172 initial pressure (P) = 2.3 atm Final Pressure (P₂) - 1.5 atm Final temperature (12) = 350 K initial temperature (T) 299k 30.5128205 L Final Pressure (Pa): 14atm Final volume (va) Initial temperature (1₂) P.V. - Pa Va Ta 31 L √₂-1/² x 18 ₂² Ideal Gas Law 1.Satm) 10) Calculate the pressure, in atmospheres, exerted by each of the following: a. 250 L of gas containing 1.35 moles at 320 K. PynrT mole n = 1.35 mole Temperature (1): 32ok P = nr I volume v= 250L Pressure (1): .14 atm P₁V₁12-23 atm) (172) X(350K) рахт, (299k) b. 4.75 L of gas containing 0.86 moles at 300, K. volume(v): 4.75L mole:0.86 malc Temperature: 300k Pressure: 4.5 atm V=4.75L 39.4 L P= nrT Va=312 R=0.0821 fatm mo! P= 4.459 atm T= 300k n = 0,86 mol R=0.082 La+mm (4.5 atm) 11) Calculate the volume, in liters, occupied by each of the following: a. 2.00 moles of H₂ at 300. K and 1.25 atm. 4 2.00 male X 0.0821 Latm mol K x 300k 1.25atm b. 0.425 moles of ammonia gas (NH3) at 0.724 atm and 37°C PV=nRT, V = nRÌ_n=0.425 mole atm = 1.35 mol x 0.0821 atm mol K²X 320k 250L P=0.14a+m) = 0.86m 1X0.0821 Latm mol¹k X300 k 4.75 L RT PV=nRT V=nRT P = 39.408 39.42 6.724 atm 12) Determine the number of moles contained in each of the following gas systems: T-376-37+273 k= 310k 14.9 L 0.425 mole (NH3) X 0.0821 Latm mol¹k'x (273+37) k. 7 14.940 15884 (14.92) a. 1.25 L of O₂ at 1.06 atm and 250. K PV=ART (1.06 atm x 1,25 L) n = PV 0.0821 Latm mot klx 250 K=1 .0646 moles -0.06455542.0646 moles b. 0.80 L of ammonia gas (NH3) at 0.925 atm and 27°C V0.80L 030 moles, 25 atm x 0.80L) P=1₁25atm に T= 300.K = 2,00lmole R=0.082(a+mk¹ mol's P=106 atm T=250.K V=1.25L R=0.0821 L. atm molk P=0,925 atm T=27°C= 21+ 273.15=300.15 0.08211atm. mol" K'x 300.15K = 0.030029646030 Mole PV = nRT n = PV RT
Initial Pressure (P) = 12 atm Initial volume (V₁) = 234 Initial temperenture (T₁) = 2500.0 306K Use the combined gas law to solve the following problems: 8) If I initially have a gas at a pressure if 12 atm, a volume of 23 liters, and a temperature of 200.0 K, and then I raise the pressure to 14 atm and increase the temperature to 300.0 K, what is the new volume of the gas? V₂ = Pivita V.P, MI atm x 234X3000K Pala Fa T₁. Pa 30. L (14 atm x 200.ok). T₁ 29/57142857 30.4 T. Pa 9) A gas takes up a volume of 17 liters, has a pressure of 2.3 atm, and a temperature of 299 K. If I raise the temperature to 350 K and lower the pressure to 1.5 atm, what is the new volume of the gas? = 172 initial pressure (P) = 2.3 atm Final Pressure (P₂) - 1.5 atm Final temperature (12) = 350 K initial temperature (T) 299k 30.5128205 L Final Pressure (Pa): 14atm Final volume (va) Initial temperature (1₂) P.V. - Pa Va Ta 31 L √₂-1/² x 18 ₂² Ideal Gas Law 1.Satm) 10) Calculate the pressure, in atmospheres, exerted by each of the following: a. 250 L of gas containing 1.35 moles at 320 K. PynrT mole n = 1.35 mole Temperature (1): 32ok P = nr I volume v= 250L Pressure (1): .14 atm P₁V₁12-23 atm) (172) X(350K) рахт, (299k) b. 4.75 L of gas containing 0.86 moles at 300, K. volume(v): 4.75L mole:0.86 malc Temperature: 300k Pressure: 4.5 atm V=4.75L 39.4 L P= nrT Va=312 R=0.0821 fatm mo! P= 4.459 atm T= 300k n = 0,86 mol R=0.082 La+mm (4.5 atm) 11) Calculate the volume, in liters, occupied by each of the following: a. 2.00 moles of H₂ at 300. K and 1.25 atm. 4 2.00 male X 0.0821 Latm mol K x 300k 1.25atm b. 0.425 moles of ammonia gas (NH3) at 0.724 atm and 37°C PV=nRT, V = nRÌ_n=0.425 mole atm = 1.35 mol x 0.0821 atm mol K²X 320k 250L P=0.14a+m) = 0.86m 1X0.0821 Latm mol¹k X300 k 4.75 L RT PV=nRT V=nRT P = 39.408 39.42 6.724 atm 12) Determine the number of moles contained in each of the following gas systems: T-376-37+273 k= 310k 14.9 L 0.425 mole (NH3) X 0.0821 Latm mol¹k'x (273+37) k. 7 14.940 15884 (14.92) a. 1.25 L of O₂ at 1.06 atm and 250. K PV=ART (1.06 atm x 1,25 L) n = PV 0.0821 Latm mot klx 250 K=1 .0646 moles -0.06455542.0646 moles b. 0.80 L of ammonia gas (NH3) at 0.925 atm and 27°C V0.80L 030 moles, 25 atm x 0.80L) P=1₁25atm に T= 300.K = 2,00lmole R=0.082(a+mk¹ mol's P=106 atm T=250.K V=1.25L R=0.0821 L. atm molk P=0,925 atm T=27°C= 21+ 273.15=300.15 0.08211atm. mol" K'x 300.15K = 0.030029646030 Mole PV = nRT n = PV RT
Can you help me with the number 9 question? Can you explain step by step including the formula (use the combined gas law to solve)? I need to plug in the fraction to give the correct answer.
Definition Definition Any of various laws that describe the ways in which volume, temperature, pressure, and other conditions correlate when matter is in a gaseous state. At a constant temperature, the pressure of a particular amount of gas is inversely proportional with its volume (Boyle's Law) In a closed system with constant pressure, the volume of an ideal gas is in direct relation with its temperature (Charles's Law) At a constant volume, the pressure of a gas is in direct relation to its temperature (Gay-Lussac's Law) If the volume of all gases are equal and under the a similar temperature and pressure, then they contain an equal number of molecules (Avogadro's Law) The state of a particular amount of gas can be determined by its pressure, volume and temperature (Ideal Gas law)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.