independent
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
Calculate :
a) Using Matrix E , is (X1 + X2 , X3) independent (show work)
b) Using Matrix E , is (⅓ X1 + X2 + ⅓ X3, X1) independent (show work)
![### Matrices Overview
#### Matrix A
Matrix \( A \) is a \( 2 \times 2 \) matrix:
\[
A = \begin{bmatrix}
7 & 3 \\
1 & 2
\end{bmatrix}
\]
#### Matrix B
Matrix \( B \) is a \( 3 \times 2 \) matrix:
\[
B = \begin{bmatrix}
1 & -1 \\
2 & 3 \\
1 & 3
\end{bmatrix}
\]
#### Matrix C
Matrix \( C \) is a \( 3 \times 1 \) column matrix:
\[
C = \begin{bmatrix}
2 \\
1 \\
4
\end{bmatrix}
\]
#### Matrix D
Matrix \( D \) is a \( 2 \times 2 \) matrix with fractional elements:
\[
D = \begin{bmatrix}
\frac{1}{2} & \frac{3}{2} \\
\frac{5}{6} & \frac{1}{3}
\end{bmatrix}
\]
#### Matrix E
Matrix \( E \) is a \( 3 \times 3 \) matrix:
\[
E = \begin{bmatrix}
4 & 1 & 1 \\
4 & 9 & 3 \\
8 & 6 & 4
\end{bmatrix}
\]
#### Matrix Σ
Matrix \( \Sigma \) is a \( 3 \times 3 \) matrix:
\[
\Sigma = \begin{bmatrix}
3 & 1 & 0 \\
1 & 2 & 4 \\
0 & 4 & 2
\end{bmatrix}
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fee7f2922-58de-4beb-945a-187f9fc8c1de%2Fd6de594d-f035-40a4-a81b-9cf7c770d268%2Fqukrc3b_processed.png&w=3840&q=75)
Transcribed Image Text:### Matrices Overview
#### Matrix A
Matrix \( A \) is a \( 2 \times 2 \) matrix:
\[
A = \begin{bmatrix}
7 & 3 \\
1 & 2
\end{bmatrix}
\]
#### Matrix B
Matrix \( B \) is a \( 3 \times 2 \) matrix:
\[
B = \begin{bmatrix}
1 & -1 \\
2 & 3 \\
1 & 3
\end{bmatrix}
\]
#### Matrix C
Matrix \( C \) is a \( 3 \times 1 \) column matrix:
\[
C = \begin{bmatrix}
2 \\
1 \\
4
\end{bmatrix}
\]
#### Matrix D
Matrix \( D \) is a \( 2 \times 2 \) matrix with fractional elements:
\[
D = \begin{bmatrix}
\frac{1}{2} & \frac{3}{2} \\
\frac{5}{6} & \frac{1}{3}
\end{bmatrix}
\]
#### Matrix E
Matrix \( E \) is a \( 3 \times 3 \) matrix:
\[
E = \begin{bmatrix}
4 & 1 & 1 \\
4 & 9 & 3 \\
8 & 6 & 4
\end{bmatrix}
\]
#### Matrix Σ
Matrix \( \Sigma \) is a \( 3 \times 3 \) matrix:
\[
\Sigma = \begin{bmatrix}
3 & 1 & 0 \\
1 & 2 & 4 \\
0 & 4 & 2
\end{bmatrix}
\]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)