Inconel® refers to a class of nickel-chromium-based superalloys that are used in high-temperature applications, such as gas turbine blades. For further improvement in the performance of gas turbine engine, the outer blade surface is coated with ceramic-based thermal barrier coating (TBC). Consider a flat Inconel® plate, with a thickness of 12 mm, is coated with a layer of TBC, with a thickness of 300 mm, on its surface. At the interface between the Inconel® and the TBC, the thermal contact conductance is 10,500 W/m2∙K. The thermal conductivities of the Inconel® and the TBC are 25 W/m∙K and 1.5 W/m∙K, respectively. The plate is in a surrounding of hot combustiongasses at 1500°C, and the convection heat transfer coefficient is 750 W/m2∙K. Determine the temperature at the mid-plane of the Inconel® plate if the outer surface temperature is 1200°C.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question

Inconel® refers to a class of nickel-chromium-based superalloys that are used in high-temperature applications, such as gas turbine blades. For further improvement in the performance
of gas turbine engine, the outer blade surface is coated with ceramic-based thermal barrier coating (TBC). Consider a flat Inconel® plate, with a thickness of 12 mm, is coated with a layer of TBC, with a thickness of 300 mm, on its surface. At the interface between the Inconel® and the TBC, the thermal contact conductance is 10,500 W/m2∙K. The thermal conductivities of the Inconel® and the TBC are 25 W/m∙K and 1.5 W/m∙K, respectively. The plate is in a surrounding of hot combustiongasses at 1500°C, and the convection heat transfer coefficient is 750 W/m2∙K. Determine the temperature at the mid-plane of the Inconel® plate if the outer surface temperature is 1200°C.

Expert Solution
steps

Step by step

Solved in 4 steps with 5 images

Blurred answer
Knowledge Booster
Energy transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON