In the proof of + 1), arcsinh x = In (x + / -00 Thus: [6] + [7]x – [8] = 0 K e-2y Multiply with [9] ey F L e-y sinh x M sinh y N arcsinh x arcsinh y U 3 е2у — 2хеу — 1 — 0 Solving the quadratic equation: ey = x ± Vx² + 1 Note that e[10] 0. Since x [11] Vx² + 1 it follows that ey = x + Vx² + 1. Therefore: y = In([12]) = ln(x + vx²+1) That shows that arcsinh x = In(x + Vx² + 1) + OPORSTU ABCDEEC

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
In die bewys van
arcsinh x = In
,-00 < x < ∞
(I + 2x^ + x) u]-
is daar by sekere stappe ontbrekende inligting.
Voltooi die bewys deur die korrekte LETTER uit die tabel te kies.
ANTWOORDOPSIES
[3]-[4]
H
y
-y
J
Laat y = arcsinh x + [1]
sinh[2]
volgens die definisie van
=
2
-X
-2
[5]
>
Q
e2y
Dus: [6] + [7]x – [8] = 0
K
e-2y
Vermenigvuldig met [9]
ey
L
e-y
%3D
arcsinh x
arcsinh y U
— е2у — 2хеу — 1 —D 0
F
sinh x M
sinh y N
+
Deur die kwadratiese vergelyking op te los volg:
ey = x ± Vx² + 1
Let op dat e [10] 0. Aangesien x [11] Vx² + 1 is, volg dit dat
e = x + Vx2 +1
Dus: y = In([12]) = In(x + vx² + 1)
Dit volg dus dat: arcsinh x = In(x + Vx2 + 1)
In the proof of
arcsinh x = In (x
x2
+ 1
-00 <x < 0
some of the information is omitted in some of the steps.
Complete the proof by choosing the correct LETTER from the table.
ANSWER OPTIONS
[3]–[4]
according to the definition of| A
H.
y
-y
J
Let y = arcsinh x +[1] =
sinh[2]
2
В
-X
-2
[5]
>
Q
e2y
Thus: [6] + [7]x – [8] = 0
D
K
e-2y
Multiply with [9]
E
ey
L
e-y
%3D
arcsinh x
arcsinh y U
—е2у — 2хеу — 1 —D 0
F
sinh x
sinh y N
+
Solving the quadratic equation:
ey = x + Vx² + 1
Note that ey[10] 0. Since x [11] Vx2 +1 it follows that
ey = x + Vx2 + 1.
Therefore: y = In([12]) = ln(x + Vx² + 1)
That shows that arcsinh x = In(x + Vx² + 1)
SOPORSTU
OPORSTU
ABCDEEC
Transcribed Image Text:In die bewys van arcsinh x = In ,-00 < x < ∞ (I + 2x^ + x) u]- is daar by sekere stappe ontbrekende inligting. Voltooi die bewys deur die korrekte LETTER uit die tabel te kies. ANTWOORDOPSIES [3]-[4] H y -y J Laat y = arcsinh x + [1] sinh[2] volgens die definisie van = 2 -X -2 [5] > Q e2y Dus: [6] + [7]x – [8] = 0 K e-2y Vermenigvuldig met [9] ey L e-y %3D arcsinh x arcsinh y U — е2у — 2хеу — 1 —D 0 F sinh x M sinh y N + Deur die kwadratiese vergelyking op te los volg: ey = x ± Vx² + 1 Let op dat e [10] 0. Aangesien x [11] Vx² + 1 is, volg dit dat e = x + Vx2 +1 Dus: y = In([12]) = In(x + vx² + 1) Dit volg dus dat: arcsinh x = In(x + Vx2 + 1) In the proof of arcsinh x = In (x x2 + 1 -00 <x < 0 some of the information is omitted in some of the steps. Complete the proof by choosing the correct LETTER from the table. ANSWER OPTIONS [3]–[4] according to the definition of| A H. y -y J Let y = arcsinh x +[1] = sinh[2] 2 В -X -2 [5] > Q e2y Thus: [6] + [7]x – [8] = 0 D K e-2y Multiply with [9] E ey L e-y %3D arcsinh x arcsinh y U —е2у — 2хеу — 1 —D 0 F sinh x sinh y N + Solving the quadratic equation: ey = x + Vx² + 1 Note that ey[10] 0. Since x [11] Vx2 +1 it follows that ey = x + Vx2 + 1. Therefore: y = In([12]) = ln(x + Vx² + 1) That shows that arcsinh x = In(x + Vx² + 1) SOPORSTU OPORSTU ABCDEEC
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,