In the figure, two 6.60 kg blocks are connected by a massless string over a pulley of radius 2.40 cm and rotational inertia 7.40 × 104 kg-m2. The string does not slip on the pulley; it is not known whether there is friction between the table and the sliding block; the pulley's axis is frictionless. When this system is released from rest, the pulley turns through 1.00 rad in 145 ms and the acceleration of the blocks is constant. What are (a) the magnitude of the pulley's angular acceleration, (b) the magnitude of either block's acceleration, (c) string tension T1, and (d) string tension T2? Assume free-fall acceleration to be equal to 9.81 m/s?.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
I’m stuck in part c and D please help me to understand it
In the figure, two 6.60 kg blocks are connected by a massless string over a pulley of radius 2.40 cm and rotational inertia 7.40 × 104
kg-m2. The string does not slip on the pulley; it is not known whether there is friction between the table and the sliding block; the
pulley's axis is frictionless. When this system is released from rest, the pulley turns through 1.00 rad in 145 ms and the acceleration of
the blocks is constant. What are (a) the magnitude of the pulley's angular acceleration, (b) the magnitude of either block's acceleration,
(c) string tension T1, and (d) string tension T2? Assume free-fall acceleration to be equal to 9.81 m/s?.
Units
rad/s^2
(a) Number
95.1
(b) Number
2.28
Units
m/s^2
(c) Number
i
Units
N
46.6
(d) Number
i
36.9
Units
Transcribed Image Text:In the figure, two 6.60 kg blocks are connected by a massless string over a pulley of radius 2.40 cm and rotational inertia 7.40 × 104 kg-m2. The string does not slip on the pulley; it is not known whether there is friction between the table and the sliding block; the pulley's axis is frictionless. When this system is released from rest, the pulley turns through 1.00 rad in 145 ms and the acceleration of the blocks is constant. What are (a) the magnitude of the pulley's angular acceleration, (b) the magnitude of either block's acceleration, (c) string tension T1, and (d) string tension T2? Assume free-fall acceleration to be equal to 9.81 m/s?. Units rad/s^2 (a) Number 95.1 (b) Number 2.28 Units m/s^2 (c) Number i Units N 46.6 (d) Number i 36.9 Units
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Rotational Kinetic energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON