In the figure, a radar station detects an airplane approaching directly from the east. At first observation, the airplane is at distance d₁ = 390 m from the station and at angle 0₁ = 45° above the horizon. The airplane is tracked through an angular change 40 = 120° in the vertical east-west plane; its distance is then d₂ = 760 m. Find the (a) magnitude and (b) direction of the airplane's displacement during this period. Give the direction as an angle relative to due west, with a positive angle being above the horizon and a negative angle being below the horizon. W da ΔΘ Airplane Jº, d₂ Radar dish E
In the figure, a radar station detects an airplane approaching directly from the east. At first observation, the airplane is at distance d₁ = 390 m from the station and at angle 0₁ = 45° above the horizon. The airplane is tracked through an angular change 40 = 120° in the vertical east-west plane; its distance is then d₂ = 760 m. Find the (a) magnitude and (b) direction of the airplane's displacement during this period. Give the direction as an angle relative to due west, with a positive angle being above the horizon and a negative angle being below the horizon. W da ΔΘ Airplane Jº, d₂ Radar dish E
Related questions
Question
Expert Solution
Step 1
Given:
At first, the distance between the station and the airplane is, .
At first, the angle between the station and the airplane above the horizon is, .
The angular change of the airplane is, .
The distance between the station and the airplane after the angular change is, .
To compute:
(a) the magnitude of the airplane's displacement during this period.
(b) the direction of the airplane's displacement during this period.
Trending now
This is a popular solution!
Step by step
Solved in 4 steps