In the expression (x+y)', the exponent represents repeated multiplication, so the expression may be written as (x+ y)(x+ y)(x+ y). One way to perform the multiplication is to multiply (x+ y)(x+ y), simplify the result, and then multiply by (x+ y) again. 1. Use the steps described above to perform the multiplication: (x+ y)(x+ y)(x+ y). While the steps above worked well for (x+y)' = (x+y)(x+y)(x+y) and can be extended to (x+y)*, (x+ y)', (x+y)°, and so on, performing the multiplication in this manner is inefficient for these bigger exponents. We can, however, look for patterns that make the multiplications easier. Another way to think about the multiplication is to consider the sum of all possible products where each product is formed by taking one term from each factor in parentheses. The expansion below should help to 1 2 3 clarify what we mean by this. The numbers above the variables in xxyxr mean that the first x comes from the first factor of (x+ y), the y comes from the second factor of (x+ y), and the second x comes from the third factor of (x+ y). 1st factor 2nd factor 3rd factor (x+ y) = (x+ y)(x + y) (x + y) 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 = xXxXx+ xXrxy+ xxyxr+ xxyxy+ yxrxr+ yxrxy+ yxyxr+ yxyxy

Mathematics For Machine Technology
8th Edition
ISBN:9781337798310
Author:Peterson, John.
Publisher:Peterson, John.
Chapter43: Introduction To Equations
Section: Chapter Questions
Problem 1A
icon
Related questions
Question

To the person answering this, be on the look out for questions that follow this first question. Would appreciate it. Thank you. 

question has multiple parts!

In the expression (x+ y)', the exponent represents repeated multiplication, so the expression may be written as
(x+ y)(x+ y)(x + y).
One way to perform the multiplication is to multiply (x+ y)(x+ y), simplify the result, and then multiply by (x+ y)
again.
1.
Use the steps described above to perform the multiplication: (x+ y)(x+ y)(x+ y).
While the steps above worked well for (x+ y)³ = (x+ y)(x+ y)(x+ y) and can be extended to (x+ y)“,
(x + y)', (x+y)°, and so on, performing the multiplication in this manner is inefficient for these bigger
exponents. We can, however, look for patterns that make the multiplications easier.
Another way to think about the multiplication is to consider the sum of all possible products where each
product is formed by taking one term from each factor in parentheses. The expansion below should help to
1 2 3
clarify what we mean by this. The numbers above the variables in xxyx mean that the first x comes from the
first factor of (x+ y), the y comes from the second factor of (x+ y), and the second x comes from the third
factor of (x+ y).
1st factor 2nd factor 3rd factor
(x+ y)' = (x+ y)(x+ y)(x + y)
1 2 3 1 2 3
= xxxXx+ xXxXy+ xxyxx+ xxyxy+ yxxxx+ yXxxy+ yxyxx+ yxyxy
1 2 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Transcribed Image Text:In the expression (x+ y)', the exponent represents repeated multiplication, so the expression may be written as (x+ y)(x+ y)(x + y). One way to perform the multiplication is to multiply (x+ y)(x+ y), simplify the result, and then multiply by (x+ y) again. 1. Use the steps described above to perform the multiplication: (x+ y)(x+ y)(x+ y). While the steps above worked well for (x+ y)³ = (x+ y)(x+ y)(x+ y) and can be extended to (x+ y)“, (x + y)', (x+y)°, and so on, performing the multiplication in this manner is inefficient for these bigger exponents. We can, however, look for patterns that make the multiplications easier. Another way to think about the multiplication is to consider the sum of all possible products where each product is formed by taking one term from each factor in parentheses. The expansion below should help to 1 2 3 clarify what we mean by this. The numbers above the variables in xxyx mean that the first x comes from the first factor of (x+ y), the y comes from the second factor of (x+ y), and the second x comes from the third factor of (x+ y). 1st factor 2nd factor 3rd factor (x+ y)' = (x+ y)(x+ y)(x + y) 1 2 3 1 2 3 = xxxXx+ xXxXy+ xxyxx+ xxyxy+ yxxxx+ yXxxy+ yxyxx+ yxyxy 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Intermediate Algebra
Intermediate Algebra
Algebra
ISBN:
9780998625720
Author:
Lynn Marecek
Publisher:
OpenStax College
Holt Mcdougal Larson Pre-algebra: Student Edition…
Holt Mcdougal Larson Pre-algebra: Student Edition…
Algebra
ISBN:
9780547587776
Author:
HOLT MCDOUGAL
Publisher:
HOLT MCDOUGAL
Glencoe Algebra 1, Student Edition, 9780079039897…
Glencoe Algebra 1, Student Edition, 9780079039897…
Algebra
ISBN:
9780079039897
Author:
Carter
Publisher:
McGraw Hill
PREALGEBRA
PREALGEBRA
Algebra
ISBN:
9781938168994
Author:
OpenStax
Publisher:
OpenStax
College Algebra
College Algebra
Algebra
ISBN:
9781337282291
Author:
Ron Larson
Publisher:
Cengage Learning