In the case when U = x on the edge y = a (where Yo is a constant), a calculate C, inorder to show that 00 24. (-1)*+1 NIty U(x, y) sin ncosh(nn) cosh (). а a n=1
In the case when U = x on the edge y = a (where Yo is a constant), a calculate C, inorder to show that 00 24. (-1)*+1 NIty U(x, y) sin ncosh(nn) cosh (). а a n=1
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
Hi please answer question b)
![A square piece of plane material occupies the region given by 0 < x< a,0 < y <
а.
Its temperature U(x, y) satisfies
a²u
a²U
= 0
(Q2)
əx²
and the boundary conditions (i) U = 0 on x = 0; (ii) U = 0 on x = a;
au
(ii):
= 0 on y = 0.
ду
a) Use the method of separation of variables to show that (Q2) and the
boundary conditions are satisfied by
NITX.
(nny
U(x,y) = En=1 Cnsin(-
cosh
n=D1
a
a
where the C, (n= 1,2,3, ...) are constants.
b) In the case when U =
x on the edge y = a (where Y, is a constant),
a
calculate C, inorder to show that
00
240
U(x,y) :
2 (-1)*1
(-1)"+1
sin
ncosh(nn)
NITX'
cosh
n=1](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe3d37512-777a-4fd8-b291-80c946ca8b24%2Fb3ce3254-9404-4857-866e-ea32373ae09d%2Fn4zp84c_processed.jpeg&w=3840&q=75)
Transcribed Image Text:A square piece of plane material occupies the region given by 0 < x< a,0 < y <
а.
Its temperature U(x, y) satisfies
a²u
a²U
= 0
(Q2)
əx²
and the boundary conditions (i) U = 0 on x = 0; (ii) U = 0 on x = a;
au
(ii):
= 0 on y = 0.
ду
a) Use the method of separation of variables to show that (Q2) and the
boundary conditions are satisfied by
NITX.
(nny
U(x,y) = En=1 Cnsin(-
cosh
n=D1
a
a
where the C, (n= 1,2,3, ...) are constants.
b) In the case when U =
x on the edge y = a (where Y, is a constant),
a
calculate C, inorder to show that
00
240
U(x,y) :
2 (-1)*1
(-1)"+1
sin
ncosh(nn)
NITX'
cosh
n=1
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Given at , .
And, on substitution of in expression , we get
So, from equation (1) and (2), we get .
Note that are constant terms for
Step by step
Solved in 5 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)