In the case of continuous least squares approximation, to find a degree 3 polynomial to approximate a continuous function in the interval [a, b] P3 (x) = ao + a1 x + aza? + aza3 we have to solve a system of equations: S. f(x) dæ S a f(m) da S a? f(x) da Sa f(x) da, то,0 то, то,2 то,3 ao m1,0 m1,1 m1,2 m1,3 a1 m2,0 m2,1 m2,2 m2,3 a2 m3,0 m3,1 m3,2 m3,3 az Suppose that a = 0, b = 1. What is the value of m2,1 = ? %3D O 1/4 7/3 O 2 O 81/4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
In the case of continuous least squares approximation, to find a degree 3 polynomial to approximate a
continuous function in the interval [a, b]
P3 (x) = ao + a1 x + aza? + aza3
we have to solve a system of equations:
Sa f(x) dæ
то,0 то,1 то,2 то,3
ao
Sa f(a) dz
x f(x)
m1,0 m1,1 m1,2 m1,3
a1
S a? f(x) dr
Sa f(x) da
m2,0
m2,1 m2,2 m2,3
a2
m3,0 m3,1
m3,2 m3,3
a3
Suppose that a = 0, b = 1. What is the value of m2,1 = ?
%3D
O 1/4
7/3
O 2
O 81/4
Transcribed Image Text:In the case of continuous least squares approximation, to find a degree 3 polynomial to approximate a continuous function in the interval [a, b] P3 (x) = ao + a1 x + aza? + aza3 we have to solve a system of equations: Sa f(x) dæ то,0 то,1 то,2 то,3 ao Sa f(a) dz x f(x) m1,0 m1,1 m1,2 m1,3 a1 S a? f(x) dr Sa f(x) da m2,0 m2,1 m2,2 m2,3 a2 m3,0 m3,1 m3,2 m3,3 a3 Suppose that a = 0, b = 1. What is the value of m2,1 = ? %3D O 1/4 7/3 O 2 O 81/4
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,