In the above example problem, a hydroelectric turbine at the base of a dam is shown schematically. The height of the water above the turbine station given as 115 m. This turbine produces 4.6 MW of electricity, and you may assume the losses in the system to be equivalent to 10 m of head of water. The diameter of the pipe at the turbine exit is 0.75 m , and the velocity of water exiting from the pipe is 12.5 m/s. Calculate the efficiency of the turbine.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
100%
115 m
turbine
(2)
→ Vz
In the above example problem, a hydroelectric turbine at the base of a dam is shown
schematically. The height of the water above the turbine station given as 115 m. This turbine
produces 4.6 MW of electricity, and you may assume the losses in the system to be equivalent to
10 m of head of water. The diameter of the pipe at the turbine exit is 0.75 m, and the velocity
of water exiting from the pipe is 12.5 m/s. Calculate the efficiency of the turbine.
N H
Transcribed Image Text:115 m turbine (2) → Vz In the above example problem, a hydroelectric turbine at the base of a dam is shown schematically. The height of the water above the turbine station given as 115 m. This turbine produces 4.6 MW of electricity, and you may assume the losses in the system to be equivalent to 10 m of head of water. The diameter of the pipe at the turbine exit is 0.75 m, and the velocity of water exiting from the pipe is 12.5 m/s. Calculate the efficiency of the turbine. N H
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The