Binomial Probability Sums Źb(x;n,p) P " " 0.10 12 0 0.25 0.2824 0.0687 0.0317 0.20 1 0.6590 0.2749 0.1584 0.30 0.0138 0.0850 2 0.8891 0.5583 0.3907 0.2528 3 4 5 6 8 9 10 11 12 0.40 0.50 0.0022 0.0002 0.0196 0.0032 0.0003 0.0000 0.0834 0.0193 0.0028 0.0002 0.0000 0.9744 0.7946 0.6488 0.4925 0.2253 0.0730 0.0153 0.0017 0.0001 0.9957 0.9274 0.8424 0.7237 0.4382 0.1938 0.0573 0.0095 0.0006 0.0000 0.9995 0.9806 0.9456 0.8822 0.6652 0.3872 0.1582 0.0386 0.0039 0.0001 0.9999 0.9961 0.9857 0.9614 0.8418 0.6128 0.3348 0.1178 0.0194 0.0005 7 1.0000 0.9994 0.9972 0.9905 0.9427 0.8062 0.5618 0.2763 0.0726 0.0043 0.9999 0.9996 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256 1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109 1.0000 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410 1.0000 0.9998 0.9978 0.9862 0.9313 0.7176 1.0000 1.0000 1.0000 1.0000 1.0000 0.60 0.0000 0.70 0.80 0.90 ☐ = Binomial Probability Sums b(z;n,p) 7-0 P 12 " 15 0 1 5 6 8 13 134 0 2 3 5 8 9 10 11 12 13 14 0 0.2288 0.0440 2 3 1 0.5846 0.1979 0.4481 0.8416 0.9559 0.6982 0.0178 0.0068 0.1010 0.0475 0.2811 0.1608 0.5213 0.3552 0.2542 0.0550 0.0238 0.0097 0.0013 1 0.6213 0.2336 0.1267 0.0637 0.0126 0.8661 0.5017 0.3326 0.2025 0.0579 0.9658 0.7473 0.5843 0.4206 0.1686 4 0.9935 0.9009 0.7940 0.6543 0.3530 0.9991 0.9700 0.9198 0.8346 0.5744 0.2905 0.0977 0.0182 0.0012 0.0000 6 0.9999 0.9930 0.9757 0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001 7 1.0000 0.9988 0.9944 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009 0.9998 0.9990 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065 1.0000 0.9999 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342 1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339 1.0000 0.9999 0.9983 0.9874 0.9363 1.0000 0.9999 0.9987 0.9903 1.0000 1.0000 1.0000 0.0008 0.0001 0.0000 0.0009 0.0081 0.0001 0.0065 0.0006 0.0398 0.1243 0.0287 0.0039 0.0002 0.0001 0.0000 0.0017 0.0001 0.0000 9 0.0112 0.0013 0.0001 10 11 0.0461 0.0078 0.0007 0.0000 0.1334 0.0321 0.0040 0.0002 12 0.10 0.20 0.25 0.30 0.40 0.50 0.2059 0.0352 0.0134 0.0047 0.0005 0.0000 0.5490 0.1671 0.0802 0.0353 0.0052 0.0005 0.0000 2 0.8159 0.3980 0.2361 0.1268 0.0271 0.0037 0.0003 0.0000 3 0.9444 0.6482 0.4613 0.2969 0.0905 0.0176 0.0019 0.0001 4 0.9873 0.8358 0.6865 0.5155 0.2173 0.0592 0.0093 0.0007 0.0000 0.9978 0.9389 0.8516 0.7216 0.4032 0.1509 0.0338 0.0037 0.0001 0.9997 0.9819 0.9434 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008 7 1.0000 0.9958 0.9827 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.9992 0.9958 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.9999 0.9992 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022 1.0000 0.9999 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127 1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556 1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 0.1841 0.60 0.70 0.80 0.90 0.0000 0.0003 13 14 15 1.0000 0.9995 0.9948 0.9647 0.8329 0.4510 1.0000 0.9995 0.9953 0.9648 0.7941 1.0000 1.0000 1.0000 1.0000 16 0 0.1853 1 0.7664 0.3787 1.0000 0.9450 0.7458 1.0000 4 5 7 0.0000 8 4 0.9908 0.8702 0.7415 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000 9 5 0.9985 0.9561 0.8883 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004 10 8 9 10 11 12 13 14 6 0.9998 0.9884 0.9617 0.9067 0.6925 0.3953 0.1501 0.0315 0.0024 0.0000 7 1.0000 0.9976 0.9897 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.0002 0.9996 0.9978 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 0.0015 1.0000 0.9997 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092 0.9998 1.0000 0.9961 0.9713 0.8757 0.6448 0.3018 1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.9999 0.9991 0.9919 0.9525 0.8021 1.0000 0.9999 0.9992 0.9932 0.9560 1.0000 1.0000 1.0000 1.0000 11 110% 12 13 14 0.0441 0.1584 0.4154 0.7712 1.0000 15 16 0.0281 0.0100 0.0033 0.0003 0.0000 0.5147 0.1407 0.0635 0.0261 0.0033 0.0003 0.0000 2 0.7892 0.3518 0.1971 0.0994 0.0183 0.0021 0.0001 3 0.9316 0.4050 0.2459 0.5981 0.0651 0.0106 0.0009 0.0000 0.9830 0.6302 0.4499 0.1666 0.0384 0.7982 0.0049 0.0003 0.9967 0.9183 0.8103 0.6598 0.3288 0.1051 0.0191 0.0016 0.0000 6 0.9995 0.9733 0.9204 0.8247 0.5272 0.2272 0.0583 0.0071 0.0002 0.9999 0.9930 0.9729 0.9256 0.0015 0.7161 0.4018 0.1423 0.0257 0.0000 1.0000 0.9985 0.9925 0.9743 0.8577 0.5982 0.2839 0.0744 0.0070 0.0001 0.9998 0.9984 0.9929 0.9417 0.7728 0.4728 0.1753 0.0267 0.0005 1.0000 0.9997 0.9984 0.9809 0.8949 0.6712 0.3402 0.0817 0.0033 1.0000 0.9997 0.9951 0.9616 0.8334 0.5501 0.2018 0.0170 1.0000 0.9991 0.9894 0.9349 0.7541 0.4019 0.0684 0.9999 0.9979 0.9817 0,9006 0.6482 0.2108 1.0000 0.9967 0.9739 0.8593 0.4853 0.9997 0.9967 0.9719 0.8147 1.0000 1.0000 1.0000 1.0000 0.9997 1.0000 " 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 P n 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 P In testing a certain kind or truck tire over rugged terrain, it is found that 20% of the trucks fail to complete the test run without a blowout. Of the next 14 trucks tested, find the probability that (a) from 2 to 6 have blowouts, (b) fewer than 4 have blowouts, and (c) more than 5 have blowouts. Click here to view page 1 of the table of binomial probability sums. Click here to view page 2 of the table of binomial probability sums. (a) The probability that from 2 to 6 trucks have blowouts is (Round to four decimal places as needed.) (b) The probability that fewer than 4 trucks have blowouts is (Round to four decimal places as needed.) (c) The probability that more than 5 trucks have blowouts is (Round to four decimal places as needed.)
Binomial Probability Sums Źb(x;n,p) P " " 0.10 12 0 0.25 0.2824 0.0687 0.0317 0.20 1 0.6590 0.2749 0.1584 0.30 0.0138 0.0850 2 0.8891 0.5583 0.3907 0.2528 3 4 5 6 8 9 10 11 12 0.40 0.50 0.0022 0.0002 0.0196 0.0032 0.0003 0.0000 0.0834 0.0193 0.0028 0.0002 0.0000 0.9744 0.7946 0.6488 0.4925 0.2253 0.0730 0.0153 0.0017 0.0001 0.9957 0.9274 0.8424 0.7237 0.4382 0.1938 0.0573 0.0095 0.0006 0.0000 0.9995 0.9806 0.9456 0.8822 0.6652 0.3872 0.1582 0.0386 0.0039 0.0001 0.9999 0.9961 0.9857 0.9614 0.8418 0.6128 0.3348 0.1178 0.0194 0.0005 7 1.0000 0.9994 0.9972 0.9905 0.9427 0.8062 0.5618 0.2763 0.0726 0.0043 0.9999 0.9996 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256 1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109 1.0000 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410 1.0000 0.9998 0.9978 0.9862 0.9313 0.7176 1.0000 1.0000 1.0000 1.0000 1.0000 0.60 0.0000 0.70 0.80 0.90 ☐ = Binomial Probability Sums b(z;n,p) 7-0 P 12 " 15 0 1 5 6 8 13 134 0 2 3 5 8 9 10 11 12 13 14 0 0.2288 0.0440 2 3 1 0.5846 0.1979 0.4481 0.8416 0.9559 0.6982 0.0178 0.0068 0.1010 0.0475 0.2811 0.1608 0.5213 0.3552 0.2542 0.0550 0.0238 0.0097 0.0013 1 0.6213 0.2336 0.1267 0.0637 0.0126 0.8661 0.5017 0.3326 0.2025 0.0579 0.9658 0.7473 0.5843 0.4206 0.1686 4 0.9935 0.9009 0.7940 0.6543 0.3530 0.9991 0.9700 0.9198 0.8346 0.5744 0.2905 0.0977 0.0182 0.0012 0.0000 6 0.9999 0.9930 0.9757 0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001 7 1.0000 0.9988 0.9944 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009 0.9998 0.9990 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065 1.0000 0.9999 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342 1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339 1.0000 0.9999 0.9983 0.9874 0.9363 1.0000 0.9999 0.9987 0.9903 1.0000 1.0000 1.0000 0.0008 0.0001 0.0000 0.0009 0.0081 0.0001 0.0065 0.0006 0.0398 0.1243 0.0287 0.0039 0.0002 0.0001 0.0000 0.0017 0.0001 0.0000 9 0.0112 0.0013 0.0001 10 11 0.0461 0.0078 0.0007 0.0000 0.1334 0.0321 0.0040 0.0002 12 0.10 0.20 0.25 0.30 0.40 0.50 0.2059 0.0352 0.0134 0.0047 0.0005 0.0000 0.5490 0.1671 0.0802 0.0353 0.0052 0.0005 0.0000 2 0.8159 0.3980 0.2361 0.1268 0.0271 0.0037 0.0003 0.0000 3 0.9444 0.6482 0.4613 0.2969 0.0905 0.0176 0.0019 0.0001 4 0.9873 0.8358 0.6865 0.5155 0.2173 0.0592 0.0093 0.0007 0.0000 0.9978 0.9389 0.8516 0.7216 0.4032 0.1509 0.0338 0.0037 0.0001 0.9997 0.9819 0.9434 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008 7 1.0000 0.9958 0.9827 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.9992 0.9958 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.9999 0.9992 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022 1.0000 0.9999 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127 1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556 1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 0.1841 0.60 0.70 0.80 0.90 0.0000 0.0003 13 14 15 1.0000 0.9995 0.9948 0.9647 0.8329 0.4510 1.0000 0.9995 0.9953 0.9648 0.7941 1.0000 1.0000 1.0000 1.0000 16 0 0.1853 1 0.7664 0.3787 1.0000 0.9450 0.7458 1.0000 4 5 7 0.0000 8 4 0.9908 0.8702 0.7415 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000 9 5 0.9985 0.9561 0.8883 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004 10 8 9 10 11 12 13 14 6 0.9998 0.9884 0.9617 0.9067 0.6925 0.3953 0.1501 0.0315 0.0024 0.0000 7 1.0000 0.9976 0.9897 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.0002 0.9996 0.9978 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 0.0015 1.0000 0.9997 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092 0.9998 1.0000 0.9961 0.9713 0.8757 0.6448 0.3018 1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.9999 0.9991 0.9919 0.9525 0.8021 1.0000 0.9999 0.9992 0.9932 0.9560 1.0000 1.0000 1.0000 1.0000 11 110% 12 13 14 0.0441 0.1584 0.4154 0.7712 1.0000 15 16 0.0281 0.0100 0.0033 0.0003 0.0000 0.5147 0.1407 0.0635 0.0261 0.0033 0.0003 0.0000 2 0.7892 0.3518 0.1971 0.0994 0.0183 0.0021 0.0001 3 0.9316 0.4050 0.2459 0.5981 0.0651 0.0106 0.0009 0.0000 0.9830 0.6302 0.4499 0.1666 0.0384 0.7982 0.0049 0.0003 0.9967 0.9183 0.8103 0.6598 0.3288 0.1051 0.0191 0.0016 0.0000 6 0.9995 0.9733 0.9204 0.8247 0.5272 0.2272 0.0583 0.0071 0.0002 0.9999 0.9930 0.9729 0.9256 0.0015 0.7161 0.4018 0.1423 0.0257 0.0000 1.0000 0.9985 0.9925 0.9743 0.8577 0.5982 0.2839 0.0744 0.0070 0.0001 0.9998 0.9984 0.9929 0.9417 0.7728 0.4728 0.1753 0.0267 0.0005 1.0000 0.9997 0.9984 0.9809 0.8949 0.6712 0.3402 0.0817 0.0033 1.0000 0.9997 0.9951 0.9616 0.8334 0.5501 0.2018 0.0170 1.0000 0.9991 0.9894 0.9349 0.7541 0.4019 0.0684 0.9999 0.9979 0.9817 0,9006 0.6482 0.2108 1.0000 0.9967 0.9739 0.8593 0.4853 0.9997 0.9967 0.9719 0.8147 1.0000 1.0000 1.0000 1.0000 0.9997 1.0000 " 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 P n 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 P In testing a certain kind or truck tire over rugged terrain, it is found that 20% of the trucks fail to complete the test run without a blowout. Of the next 14 trucks tested, find the probability that (a) from 2 to 6 have blowouts, (b) fewer than 4 have blowouts, and (c) more than 5 have blowouts. Click here to view page 1 of the table of binomial probability sums. Click here to view page 2 of the table of binomial probability sums. (a) The probability that from 2 to 6 trucks have blowouts is (Round to four decimal places as needed.) (b) The probability that fewer than 4 trucks have blowouts is (Round to four decimal places as needed.) (c) The probability that more than 5 trucks have blowouts is (Round to four decimal places as needed.)
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
I need to solve the attached question please
AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
Unlock instant AI solutions
Tap the button
to generate a solution
Recommended textbooks for you
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON