In Rª, let S = {(1,2,2, –1), (0, –1,4, 2)} and T = U = sp(S) and W = sp(T). Find a basis for U +W and determine the dimension of {(2, 5, 0, –4), (0, 2, –8, 3)}, and let UnW.
In Rª, let S = {(1,2,2, –1), (0, –1,4, 2)} and T = U = sp(S) and W = sp(T). Find a basis for U +W and determine the dimension of {(2, 5, 0, –4), (0, 2, –8, 3)}, and let UnW.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
should i be using: dim(U+W)= dimU + dimW - dim(U intersection W) to determine the. dimensions?
NOTE: u do not have to find a basis. thank you.
![In Rt, let S = {(1, 2, 2, – 1), (0, –1, 4, 2)} and T = {(2,5,0, –4), (0, 2, –8, 3)}, and let
U = sp(S) and W = sp(T). Find a basis for U +W and determine the dimension of
UnW.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdb708fa5-116d-42c3-bb62-31dd00678e29%2F1fbef62e-65ba-439b-a97f-a4ef8eded1ce%2Filn6oj_processed.png&w=3840&q=75)
Transcribed Image Text:In Rt, let S = {(1, 2, 2, – 1), (0, –1, 4, 2)} and T = {(2,5,0, –4), (0, 2, –8, 3)}, and let
U = sp(S) and W = sp(T). Find a basis for U +W and determine the dimension of
UnW.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Your approach is absolutely right!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)