In Problems 55, 56, 57, 58, 59, 60, 61, and 62 write each function in terms of unit step functions. Find the Laplace transform of the given function. 55. 2, 0≤t<3 f(t) = -2, t≥ 3 56. Answer+ f(t)=2-4 (t-3) L{S(0))= 2 4 S - S -38 1, 0
In Problems 55, 56, 57, 58, 59, 60, 61, and 62 write each function in terms of unit step functions. Find the Laplace transform of the given function. 55. 2, 0≤t<3 f(t) = -2, t≥ 3 56. Answer+ f(t)=2-4 (t-3) L{S(0))= 2 4 S - S -38 1, 0
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
7.3
I only need the number 56, please. Thank you
![In Problems 55, 56, 57, 58, 59, 60, 61, and 62 write each function in terms of unit step functions. Find the
Laplace transform of the given function.
55.
2,
0≤t<3
f(t) =
-2,
t≥ 3
56.
Answer+
f(t)=2-4 (t-3)
L{S(0))=
2 4
S
-
S
-38
1, 0<t<4
f(t)=0, 4<t<5
t≥ 5
AA](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2fbe43e9-fbd8-44f9-8fb9-d15b5bb91c2c%2F9d782477-532a-4b97-b2f2-e2d4b0afb26a%2Fo3kwya7_processed.jpeg&w=3840&q=75)
Transcribed Image Text:In Problems 55, 56, 57, 58, 59, 60, 61, and 62 write each function in terms of unit step functions. Find the
Laplace transform of the given function.
55.
2,
0≤t<3
f(t) =
-2,
t≥ 3
56.
Answer+
f(t)=2-4 (t-3)
L{S(0))=
2 4
S
-
S
-38
1, 0<t<4
f(t)=0, 4<t<5
t≥ 5
AA
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)