In Problems 5-40, solve each logarithmic equation. Express irrational solutions in exact form and as a decimal rounded to three decimal places. 5. log, x = 2 8. log, (3x – 1) = 2 6. log (x + 6) = 1 7. log2(5x) = 4 9. log,(x + 2) = log, 8 10. log (2r + 3) = log; 3 11. log 3 x = 2 log3 2 12. -2 log4 x = log4 9 13. 3 log2 x -log; 27 14. 2 log5 x = 3 log5 4 15. 3 log2(x - 1) + log2 4 = 5 16. 2 log3 (x + 4) – log3 9 = 2 17. log x + log (x + 15) = 2 18. log x + log (x - 21) = 2 19. log(2r + 1) = 1 + log (x - 2) 20. log (2x) – log(x – 3) = 1 21. log2(x + 7) + log2(x + 8) = 1 22. log.(x + 4) + logo(x + 3) = 1 23. logs (x + 6) = 1 - logs (x + 4) 24. logs(x + 3) = 1 – logs (x - 1) 25. In x + In (x + 2) = 4 26. In (x + 1) In x = 2 27. log3 (x + 1) + log3 (x + 4) = 2 28. log2(x + 1) + log2(x + 7) = 3 29. log/3 (x² + x) – log1/3 (x² – x) = -1 30. log,(x² – 9) – log,(x + 3) = 3 31. log. (x – 1) – log.(x + 6) = log (x – 2) – log.(x + 3) 32. log, x + log, (x – 2) = log. (x + 4) %3D 33. 2 logs (x – 3) - logs 8 = log5 2 34. log3x – 2 log35 = log3 (x + 1) – 2 log3 10 35. 2 logo (x + 2) = 3 log, 2 + log, 4 36. 3( log7x – log, 2) = 2 log74 37. 2 log13 (x + 2) = log13 (4x + 7) 1 38. log (x - 1) = 3 log 2 39. ( log3.x)? – 5( log3.x) = 6 40. In x - 3VIn x + 2 = 0

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
In Problems 5-40, solve each logarithmic equation. Express irrational solutions in exact form and as a decimal rounded to three decimal
places.
5. log, x = 2
8. log, (3x – 1) = 2
6. log (x + 6) = 1
7. log2(5x) = 4
9. log,(x + 2) = log, 8
10. log (2r + 3) = log; 3
11. log 3 x = 2 log3 2
12. -2 log4 x = log4 9
13. 3 log2 x
-log; 27
14. 2 log5 x = 3 log5 4
15. 3 log2(x - 1) + log2 4 = 5
16. 2 log3 (x + 4) – log3 9 = 2
17. log x + log (x + 15) = 2
18. log x + log (x - 21) = 2
19. log(2r + 1) = 1 + log (x - 2)
20. log (2x) – log(x – 3) = 1
21. log2(x + 7) + log2(x + 8) = 1
22. log.(x + 4) + logo(x + 3) = 1
23. logs (x + 6) = 1 - logs (x + 4)
24. logs(x + 3) = 1 – logs (x - 1)
25. In x + In (x + 2)
= 4
26. In (x + 1)
In x = 2
27. log3 (x + 1) + log3 (x + 4) = 2
28. log2(x + 1) + log2(x + 7) = 3
29. log/3 (x² + x) – log1/3 (x² – x) = -1
30. log,(x² – 9) – log,(x + 3) = 3
31. log. (x – 1) – log.(x + 6) = log (x – 2) – log.(x + 3)
32. log, x + log, (x – 2) = log. (x + 4)
%3D
33. 2 logs (x – 3) - logs 8 = log5 2
34. log3x – 2 log35 = log3 (x + 1) – 2 log3 10
35. 2 logo (x + 2) = 3 log, 2 + log, 4
36. 3( log7x – log, 2) = 2 log74
37. 2 log13 (x + 2) = log13 (4x + 7)
1
38. log (x - 1) =
3 log 2
39. ( log3.x)? – 5( log3.x) = 6
40. In x - 3VIn x + 2 = 0
Transcribed Image Text:In Problems 5-40, solve each logarithmic equation. Express irrational solutions in exact form and as a decimal rounded to three decimal places. 5. log, x = 2 8. log, (3x – 1) = 2 6. log (x + 6) = 1 7. log2(5x) = 4 9. log,(x + 2) = log, 8 10. log (2r + 3) = log; 3 11. log 3 x = 2 log3 2 12. -2 log4 x = log4 9 13. 3 log2 x -log; 27 14. 2 log5 x = 3 log5 4 15. 3 log2(x - 1) + log2 4 = 5 16. 2 log3 (x + 4) – log3 9 = 2 17. log x + log (x + 15) = 2 18. log x + log (x - 21) = 2 19. log(2r + 1) = 1 + log (x - 2) 20. log (2x) – log(x – 3) = 1 21. log2(x + 7) + log2(x + 8) = 1 22. log.(x + 4) + logo(x + 3) = 1 23. logs (x + 6) = 1 - logs (x + 4) 24. logs(x + 3) = 1 – logs (x - 1) 25. In x + In (x + 2) = 4 26. In (x + 1) In x = 2 27. log3 (x + 1) + log3 (x + 4) = 2 28. log2(x + 1) + log2(x + 7) = 3 29. log/3 (x² + x) – log1/3 (x² – x) = -1 30. log,(x² – 9) – log,(x + 3) = 3 31. log. (x – 1) – log.(x + 6) = log (x – 2) – log.(x + 3) 32. log, x + log, (x – 2) = log. (x + 4) %3D 33. 2 logs (x – 3) - logs 8 = log5 2 34. log3x – 2 log35 = log3 (x + 1) – 2 log3 10 35. 2 logo (x + 2) = 3 log, 2 + log, 4 36. 3( log7x – log, 2) = 2 log74 37. 2 log13 (x + 2) = log13 (4x + 7) 1 38. log (x - 1) = 3 log 2 39. ( log3.x)? – 5( log3.x) = 6 40. In x - 3VIn x + 2 = 0
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning