In Problems 25-28 use (12) to verify that the indicated function is a solution of the given differential equation. Assume an appropriate interval I of definition of each solution. dy -3t e dt 25. x-3xy = 1; y = dx %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
d°y
24. х3.
+ 2r2
--+y= 12x²;
dr3
dx?
dx
y = cxl + c2x + c3x In x+ 4x2
Dise
In Problems 25-28 use (12) to verify that the indicated function is
a solution of the given differential equation. Assume an appropriate
interval I of definition of each solution.
43.
44.
dy
25. x
- 3xy = 1; y = e3x
e-3t
dt
dx
45.
dy
26. 2х — - у 3D 2х сos x;
dx
y = Vx
Vi
* cos t
dt
dy
+ xy = 10 sin x; y=-+
dx
5
10
27. x
sin t
dt
X J1
46.
dy
28.+20y 1; y e+ dt
%3D
Transcribed Image Text:d°y 24. х3. + 2r2 --+y= 12x²; dr3 dx? dx y = cxl + c2x + c3x In x+ 4x2 Dise In Problems 25-28 use (12) to verify that the indicated function is a solution of the given differential equation. Assume an appropriate interval I of definition of each solution. 43. 44. dy 25. x - 3xy = 1; y = e3x e-3t dt dx 45. dy 26. 2х — - у 3D 2х сos x; dx y = Vx Vi * cos t dt dy + xy = 10 sin x; y=-+ dx 5 10 27. x sin t dt X J1 46. dy 28.+20y 1; y e+ dt %3D
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,