In problems 19-22, find L[(t)] by first using an appropriate trigonometric identity. 19. f(t) = sin 2t cos 2t.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Please please Answer Q19 to 22
In problems 10 – 18, find L[(t)J.
10. f(t) = 2t*.
11. f(t) = 4t – 10.
12. f(t) = t2 + 6t - 3.
13. f(t) = (t + 1)3.
14. f(t) = 1+ et.
15. f(t) = (1+ e2t)?.
16. f(t) = 4t2 - 5 sin 3t.
17. f(t) = k sinh kt.
18. f(t) = et sinh t.
In problems 19 – 22, find L[Kt)] by first using an appropriate trigonometric identity.
19. f(t) = sin 2t cos 2t.
20. f(t) = cos²t.
21. f(t) = sin(4t + 5).
22. f(t) = 10 cos (t -).
23. One definition of the gamma function r(a) is given by the improper integral
T(a) =
ta-le-t dt, a > 0.
Use this definition to show that r(a + 1) = ar(a).
24. Use problem 23 to show that
Г(а + 1)
L[t"] =
a > -1.
sa+1
This result is a generalisation of
L[t"] =
n!
n = 1,2,3, ..
sn+1'
In problems 25 – 28, use the results of 23 and 24 and the fact that r(-) = Vn to find the
transform of the given function.
25. f(t) = t.
26. f(t) = t7.
27. f(t) = t7.
28. f(t) = 6tz - 24tz.
29. Use L[eat =- to show that
s-a
s - a + ib
L[ea+ib)r] =
%3D
(s - a)2 + b2'
where a and b are real and i? = - 1. Show how Euler's fomula can be used to pro
the results
s - a
L[eat cos bt] =
(s - a)2 + b2
and
Transcribed Image Text:In problems 10 – 18, find L[(t)J. 10. f(t) = 2t*. 11. f(t) = 4t – 10. 12. f(t) = t2 + 6t - 3. 13. f(t) = (t + 1)3. 14. f(t) = 1+ et. 15. f(t) = (1+ e2t)?. 16. f(t) = 4t2 - 5 sin 3t. 17. f(t) = k sinh kt. 18. f(t) = et sinh t. In problems 19 – 22, find L[Kt)] by first using an appropriate trigonometric identity. 19. f(t) = sin 2t cos 2t. 20. f(t) = cos²t. 21. f(t) = sin(4t + 5). 22. f(t) = 10 cos (t -). 23. One definition of the gamma function r(a) is given by the improper integral T(a) = ta-le-t dt, a > 0. Use this definition to show that r(a + 1) = ar(a). 24. Use problem 23 to show that Г(а + 1) L[t"] = a > -1. sa+1 This result is a generalisation of L[t"] = n! n = 1,2,3, .. sn+1' In problems 25 – 28, use the results of 23 and 24 and the fact that r(-) = Vn to find the transform of the given function. 25. f(t) = t. 26. f(t) = t7. 27. f(t) = t7. 28. f(t) = 6tz - 24tz. 29. Use L[eat =- to show that s-a s - a + ib L[ea+ib)r] = %3D (s - a)2 + b2' where a and b are real and i? = - 1. Show how Euler's fomula can be used to pro the results s - a L[eat cos bt] = (s - a)2 + b2 and
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning