In Problems 1-40 solve the given differential equation by separation of variables. that div

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Can someone help me answer questions 21 and 23 I’m having a hard time .
In Problems 1-40 solve the given differential equation by separation of
variables.
dy
dx
1.
3. dx + e³x dy = 0
dy
5. (x + 1) = x + 6
dx
7.xy' = 4y
11.
13.
dy
dx
dx
dy
21.
dy
dx
23.
= sin 5x
=
ds
dr
=
19. y lnx
dP
dt
,3
x²
= e3x+2y
15. (4y + yx²) dy − (2x + xy²) dx = 0
-
16. (1 + x² + y² + x²y²)dy = y² dx
(17. 2y(x + 1)dy = x dx
=
= ( ² + ¹)²
X
x²y²
1 + x
=
dx
dy
adlı
kS
bini as il
= P - p²
2.
4. dx - x²dy = 0
dy
dx
6. et.
10.
dy
dx
dy
maldong 8. + 2xy = 0
dx
20.
dy
dx
dx
12. =
dy
22.
24.
= (x + 1)²
dy
dx
=
dy
14. e'y = ey+e=2x-y
dx
dQ
dt
18. x²y²dy = (y + 1) dx
2y + 3)²
4x + 5,
dN
dt
=
=
2x
-
y + 1
X
1 + 2y²
y sin x
k(Q - 70)
+ N =
= Nte¹+2
Transcribed Image Text:In Problems 1-40 solve the given differential equation by separation of variables. dy dx 1. 3. dx + e³x dy = 0 dy 5. (x + 1) = x + 6 dx 7.xy' = 4y 11. 13. dy dx dx dy 21. dy dx 23. = sin 5x = ds dr = 19. y lnx dP dt ,3 x² = e3x+2y 15. (4y + yx²) dy − (2x + xy²) dx = 0 - 16. (1 + x² + y² + x²y²)dy = y² dx (17. 2y(x + 1)dy = x dx = = ( ² + ¹)² X x²y² 1 + x = dx dy adlı kS bini as il = P - p² 2. 4. dx - x²dy = 0 dy dx 6. et. 10. dy dx dy maldong 8. + 2xy = 0 dx 20. dy dx dx 12. = dy 22. 24. = (x + 1)² dy dx = dy 14. e'y = ey+e=2x-y dx dQ dt 18. x²y²dy = (y + 1) dx 2y + 3)² 4x + 5, dN dt = = 2x - y + 1 X 1 + 2y² y sin x k(Q - 70) + N = = Nte¹+2
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,