In [ ] Problem 3 Write a function buckets : ('a -> 'a -> bool) -> 'a list -> 'a list list that partitions a list into equivalence classes. That is, buckets equiv 1st should return a list of lists where each sublist in the result contains equivalent elements, where two elements are considered equivalent if equiv returns true. For example: buckets () [1; 2; 3; 4] = [[1]; [2]; [3]; [4]] buckets () [1; 2; 3; 4; 2; 3; 4; 3; 4] = buckets (fun x y-> (=) (x mod 3) The order of the buckets must reflect the order in which the elements appear in the original list. For example, the output of buckets (=) [1;2;3;4] should be [[1]; [2]; [3]; [4]] and not [[2]; [1]; [3];[4]] or any other permutation. [[1]; [2; 2]; [3; 3; 3]; [4; 4; 4]] (y mod 3)) [1; 2; 3; 4; 5; 6] = [[1;4]; [2;5]; [3;6]] The order of the elements in each bucket must reflect the order in which the elements appear in the original list. For example, the output of buckets (fun x y-> (=) (x mod 3) (y mod 3)) [1;2;3; 4; 5; 6] should be [[1;4]; [2;5]; [3;6]] and not [[4;1]; [5;2]; [3;6]] or any other permutations. Assume that the comparison function ('a -> 'a -> bool) is commutative, associative and idempotent. Just use lists. Do not use sets or hash tables. List append function @ may come in handy. [1;2;3] @[4;5;6] = [1;2;3; 4; 5;6]. let buckets p 1 = (* YOUR CODE HERE *) In [ ]: assert (buckets (=) [1;2;3;4] = [[1]; [2]; [3]; [4]]); assert (buckets (=) [1; 2; 3; 4; 2; 3; 4;3;4] = [[1]; [2; 2]; [3; 3; 3]; [4;4;4]]); assert (buckets (fun x y-> (=) (x mod 3) (y mod 3)) [1; 2; 3; 4; 5; 6] = [[1;4]; [2;5]; [3; 6]])

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

OCAML Problem

# Problem 3

### Write a function

**Type Signature**

``` 
buckets : ('a -> 'a -> bool) -> 'a list -> 'a list list
```

**Description**:  
This function partitions a list into equivalence classes. Specifically, the function `buckets equiv lst` returns a list of lists, where each sublist contains elements considered equivalent if `equiv` returns `true`.

**Example**:

- `buckets (=) [1;2;3;4] = [[1];[2];[3];[4]]`
- `buckets (=) [1;2;3;4;2;3;4;3;4] = [[1];[2;2];[3;3;3];[4;4;4]]`
- `buckets (fun x y -> (=) (x mod 3) (y mod 3)) [1;2;3;4;5;6] = [[1;4];[2;5];[3;6]]`

The order of the buckets should reflect the order in the original list. For example:

- The output of `buckets (=) [1;2;3;4]` should be `[[1];[2];[3];[4]]` not `[[2];[1];[3];[4]]` or any permutation.

Similarly, the order of elements within each bucket should reflect their original order. Thus, the output of:

- `buckets (fun x y -> (=) (x mod 3) (y mod 3)) [1;2;3;4;5;6]` should be `[[1;4];[2;5];[3;6]]` not `[[4;1];[5;2];[3;6]]` or any permutation.

**Assumptions**:

- The comparison function `('a -> 'a -> bool)` is commutative, associative, and idempotent.

**Requirements**:

- Use lists only. Do not use sets or hash tables.
- The list append function `@` may be useful. For example, `[1;2;3] @ [4;5;6] = [1;2;3;4;5;6]`.

**Implementation**:

```ocaml
let buckets p l =
Transcribed Image Text:# Problem 3 ### Write a function **Type Signature** ``` buckets : ('a -> 'a -> bool) -> 'a list -> 'a list list ``` **Description**: This function partitions a list into equivalence classes. Specifically, the function `buckets equiv lst` returns a list of lists, where each sublist contains elements considered equivalent if `equiv` returns `true`. **Example**: - `buckets (=) [1;2;3;4] = [[1];[2];[3];[4]]` - `buckets (=) [1;2;3;4;2;3;4;3;4] = [[1];[2;2];[3;3;3];[4;4;4]]` - `buckets (fun x y -> (=) (x mod 3) (y mod 3)) [1;2;3;4;5;6] = [[1;4];[2;5];[3;6]]` The order of the buckets should reflect the order in the original list. For example: - The output of `buckets (=) [1;2;3;4]` should be `[[1];[2];[3];[4]]` not `[[2];[1];[3];[4]]` or any permutation. Similarly, the order of elements within each bucket should reflect their original order. Thus, the output of: - `buckets (fun x y -> (=) (x mod 3) (y mod 3)) [1;2;3;4;5;6]` should be `[[1;4];[2;5];[3;6]]` not `[[4;1];[5;2];[3;6]]` or any permutation. **Assumptions**: - The comparison function `('a -> 'a -> bool)` is commutative, associative, and idempotent. **Requirements**: - Use lists only. Do not use sets or hash tables. - The list append function `@` may be useful. For example, `[1;2;3] @ [4;5;6] = [1;2;3;4;5;6]`. **Implementation**: ```ocaml let buckets p l =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Linked List Representation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education