In Prob. 13.109, a space vehicle was in a circular orbit at an altitude of 225 mi above the surface of the earth. To return to earth it decreased its speed as it passed through A by firing its engine for a short interval of time in a direction opposite to the direction of its motion. Its resulting velocity as it reached point B at an altitude of 40 mi formed an angle fB = 60° with the vertical. An alternative strategy for taking the space vehicle out of its circular orbit would be to turn it around so that its engine pointed away from the earth and then give it an incremental velocity DvA toward the center O of the earth. This would likely require a smaller expenditure of energy when firing the engine at A, but might result in too fast a descent at B. Assuming that this strategy is used, use computational software to determine the values of fB and vB for an energy expenditure ranging from 5 to 100 percent of that needed in Prob. 13.109. 13.109. A space vehicle is in a circular orbit at an altitude of 225 mi above the earth. To return to earth, it decreases its speed as it passes through A by firing its engine for a short interval of time in a direction opposite to the direction of its motion. Knowing that the velocity of the space vehicle should form an angle fB = 60° with the vertical as it reaches point B at an altitude of 40 mi, determine (a) the required speed of the vehicle as it leaves its circular orbit at A, (b) its speed at point B.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

In Prob. 13.109, a space vehicle was in a circular orbit at an altitude of 225 mi above the surface of the earth. To return to earth it decreased its speed as it passed through A by firing its engine for a short interval of time in a direction opposite to the direction of its motion. Its resulting velocity as it reached point B at an altitude of 40 mi formed an angle fB = 60° with the vertical. An alternative strategy for taking the space vehicle out of its circular orbit would be to turn it around so that its engine pointed away from the earth and then give it an incremental velocity DvA toward the center O of the earth. This would likely require a smaller expenditure of energy when firing the engine at A, but might result in too fast a descent at B. Assuming that this strategy is used, use computational software to determine the values of fB and vB for an energy expenditure ranging from 5 to 100 percent of that needed in Prob. 13.109.

13.109. A space vehicle is in a circular orbit at an altitude of 225 mi above the earth. To return to earth, it decreases its speed as it passes through A by firing its engine for a short interval of time in a direction opposite to the direction of its motion. Knowing that the velocity of the space vehicle should form an angle fB = 60° with the vertical as it reaches point B at an altitude of 40 mi, determine (a) the required speed of the vehicle as it leaves its circular orbit at A, (b) its speed at point B.

 

 


 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Knowledge Booster
Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY