In Prob. 13.109, a space vehicle was in a circular orbit at an altitude of 225 mi above the surface of the earth. To return to earth it decreased its speed as it passed through A by firing its engine for a short interval of time in a direction opposite to the direction of its motion. Its resulting velocity as it reached point B at an altitude of 40 mi formed an angle fB = 60° with the vertical. An alternative strategy for taking the space vehicle out of its circular orbit would be to turn it around so that its engine pointed away from the earth and then give it an incremental velocity DvA toward the center O of the earth. This would likely require a smaller expenditure of energy when firing the engine at A, but might result in too fast a descent at B. Assuming that this strategy is used, use computational software to determine the values of fB and vB for an energy expenditure ranging from 5 to 100 percent of that needed in Prob. 13.109. 13.109. A space vehicle is in a circular orbit at an altitude of 225 mi above the earth. To return to earth, it decreases its speed as it passes through A by firing its engine for a short interval of time in a direction opposite to the direction of its motion. Knowing that the velocity of the space vehicle should form an angle fB = 60° with the vertical as it reaches point B at an altitude of 40 mi, determine (a) the required speed of the vehicle as it leaves its circular orbit at A, (b) its speed at point B.
In Prob. 13.109, a space vehicle was in a circular orbit at an altitude of 225 mi above the surface of the earth. To return to earth it decreased its speed as it passed through A by firing its engine for a short interval of time in a direction opposite to the direction of its motion. Its resulting velocity as it reached point B at an altitude of 40 mi formed an angle fB = 60° with the vertical. An alternative strategy for taking the space vehicle out of its circular orbit would be to turn it around so that its engine pointed away from the earth and then give it an incremental velocity DvA toward the center O of the earth. This would likely require a smaller expenditure of energy when firing the engine at A, but might result in too fast a descent at B. Assuming that this strategy is used, use computational software to determine the values of fB and vB for an energy expenditure ranging from 5 to 100 percent of that needed in Prob. 13.109.
13.109. A space vehicle is in a circular orbit at an altitude of 225 mi above the earth. To return to earth, it decreases its speed as it passes through A by firing its engine for a short interval of time in a direction opposite to the direction of its motion. Knowing that the velocity of the space vehicle should form an angle fB = 60° with the vertical as it reaches point B at an altitude of 40 mi, determine (a) the required speed of the vehicle as it leaves its circular orbit at A, (b) its speed at point B.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 4 images