In [ ]: In [ ]: Problem 3 Write a function buckets : ('a -> 'a > bool) -> 'a list -> 'a list list that partitions a list into equivalence classes. That is, buckets equiv 1st should return a list of lists where each sublist in the result contains equivalent elements, where two elements are considered equivalent if equiv returns true. For example: buckets () [1;2;3;4] = [[1]; [2]; [3];[4]] buckets (=) [1; 2; 3; 4; 2; 3; 4;3;4] = [[1]; [2;2]; [3; 3; 3]; [4; 4;4]] buckets (fun x y-> (=) (x mod 3) (y mod 3)) [1; 2; 3; 4; 5; 6] = [[1;4]; [2;5]; [3;6]] The order of the buckets must reflect the order in which the elements appear in the original list. For example, the output of buckets (=) [1;2;3;4] should be [[1]; [2]; [3]; [4]] and not [[2]; [1]; [3]; [4]] or any other permutation. The order of the elements in each bucket must reflect the order in which the elements appear in the original list. For example, the output of buckets (fun x y (=) (x mod 3) (y mod 3)) [1; 2; 3; 4; 5; 6] should be [[1;4]; [2;5]; [3;6]] and not [[4;1]; [5;2]; [3; 6]] or any other permutations. Assume that the comparison function ('a -> 'a -> bool) is commutative, associative and idempotent. Just use lists. Do not use sets or hash tables. List append function @ may come in handy. [1;2;3] @[4;5;6] = [1;2;3; 4; 5;6]. let buckets p 1 = (* YOUR CODE HERE *) assert (buckets (=) [1;2;3;4] = [[¹]; [2]; [3]; [4]]); assert (buckets (=) [1; 2; 3; 4; 2; 3; 4; 3; 4] = [[1]; [2;2]; [3; 3; 3]; [4; 4; 4]]); assert (buckets (fun x y-> (=) (x mod 3) (y mod 3)) [1; 2; 3; 4; 5; 6] = [[1;4]; [2;5]; [3; 6]])
In [ ]: In [ ]: Problem 3 Write a function buckets : ('a -> 'a > bool) -> 'a list -> 'a list list that partitions a list into equivalence classes. That is, buckets equiv 1st should return a list of lists where each sublist in the result contains equivalent elements, where two elements are considered equivalent if equiv returns true. For example: buckets () [1;2;3;4] = [[1]; [2]; [3];[4]] buckets (=) [1; 2; 3; 4; 2; 3; 4;3;4] = [[1]; [2;2]; [3; 3; 3]; [4; 4;4]] buckets (fun x y-> (=) (x mod 3) (y mod 3)) [1; 2; 3; 4; 5; 6] = [[1;4]; [2;5]; [3;6]] The order of the buckets must reflect the order in which the elements appear in the original list. For example, the output of buckets (=) [1;2;3;4] should be [[1]; [2]; [3]; [4]] and not [[2]; [1]; [3]; [4]] or any other permutation. The order of the elements in each bucket must reflect the order in which the elements appear in the original list. For example, the output of buckets (fun x y (=) (x mod 3) (y mod 3)) [1; 2; 3; 4; 5; 6] should be [[1;4]; [2;5]; [3;6]] and not [[4;1]; [5;2]; [3; 6]] or any other permutations. Assume that the comparison function ('a -> 'a -> bool) is commutative, associative and idempotent. Just use lists. Do not use sets or hash tables. List append function @ may come in handy. [1;2;3] @[4;5;6] = [1;2;3; 4; 5;6]. let buckets p 1 = (* YOUR CODE HERE *) assert (buckets (=) [1;2;3;4] = [[¹]; [2]; [3]; [4]]); assert (buckets (=) [1; 2; 3; 4; 2; 3; 4; 3; 4] = [[1]; [2;2]; [3; 3; 3]; [4; 4; 4]]); assert (buckets (fun x y-> (=) (x mod 3) (y mod 3)) [1; 2; 3; 4; 5; 6] = [[1;4]; [2;5]; [3; 6]])
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
100%
OCAML Code for the solution, Not python or another language.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
This is what i'm getting from typing in the code, any suggestions how to solve the error?
Solution
by Bartleby Expert
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education