In experiment 1, two surfaces with a temperature difference of 10 C are connected by a slab of material with area 100 cm^2 and length (between the surfaces) of 10 cm. In experiment 2, the material is of the same type, but the temperature difference is 20 C, the area is 200 cm^2, and the length is 40 cm. Compared to the rate of heat transfer in experiment 1, the rate of heat transfer in experiment 2 is: Group of answer choices 1/4 as much half as much 4 times as much the same twice as much
Energy transfer
The flow of energy from one region to another region is referred to as energy transfer. Since energy is quantitative; it must be transferred to a body or a material to work or to heat the system.
Molar Specific Heat
Heat capacity is the amount of heat energy absorbed or released by a chemical substance per the change in temperature of that substance. The change in heat is also called enthalpy. The SI unit of heat capacity is Joules per Kelvin, which is (J K-1)
Thermal Properties of Matter
Thermal energy is described as one of the form of heat energy which flows from one body of higher temperature to the other with the lower temperature when these two bodies are placed in contact to each other. Heat is described as the form of energy which is transferred between the two systems or in between the systems and their surrounding by the virtue of difference in temperature. Calorimetry is that branch of science which helps in measuring the changes which are taking place in the heat energy of a given body.
In experiment 1, two surfaces with a temperature difference of 10 C are connected by a slab of material with area 100 cm^2 and length (between the surfaces) of 10 cm. In experiment 2, the material is of the same type, but the temperature difference is 20 C, the area is 200 cm^2, and the length is 40 cm. Compared to the rate of
Step by step
Solved in 4 steps