In Exercises 5-6 an elementary matrix E and a matrix A are given. Identify the row operation corresponding to E and verify that the product EA results from applying the row operation to A. 5. a. E = 0 [ J }]}, 1 0 1 0-3 b. E= 0 1 c. E = 0 0 4 1 0 00 1 A = 0 0 1 = [ " -1 -2 5 3 -6 -6 2 A1 2 1 4 A = 2 5 3 6 =] -1 0 -4 -4 -3 -1 5 3 013 -1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Elementary Matrices and Row Operations: Example Exercises**

In Exercises 5-6, an elementary matrix \( E \) and a matrix \( A \) are given. Identify the row operation corresponding to \( E \) and verify that the product \( EA \) results from applying the row operation to \( A \).

### 5.
**a.**

\[ E = \begin{bmatrix}
0 & 1 \\
1 & 0 
\end{bmatrix}, \quad A = \begin{bmatrix}
-1 & -2 & 5 & -1 \\
3 & -6 & -6 & -6 
\end{bmatrix} \]

**b.**

\[ E = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1 
\end{bmatrix}, \quad A = \begin{bmatrix}
2 & -1 & 0 & -4 & -4 \\
1 & -3 & -1 & 5 & 3 \\
2 & 0 & 1 & 3 & -1 
\end{bmatrix} \]

**c.**

\[ E = \begin{bmatrix}
1 & 0 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1 
\end{bmatrix}, \quad A = \begin{bmatrix}
1 & 4 \\
2 & 5 \\
3 & 6 
\end{bmatrix} \]

### Explanation:

In these exercises, we are given an elementary matrix \( E \) and a matrix \( A \). The task is to identify the row operation represented by \( E \) and confirm that the product \( EA \) correctly represents the application of this row operation to the matrix \( A \).

#### Elementary Matrix Operations:
1. **Row Interchange (a):** 
   The matrix \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) swaps the first and second rows of matrix \( A \).

2. **Row Scaling and Addition (b):**
   The matrix \( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}
Transcribed Image Text:**Elementary Matrices and Row Operations: Example Exercises** In Exercises 5-6, an elementary matrix \( E \) and a matrix \( A \) are given. Identify the row operation corresponding to \( E \) and verify that the product \( EA \) results from applying the row operation to \( A \). ### 5. **a.** \[ E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} -1 & -2 & 5 & -1 \\ 3 & -6 & -6 & -6 \end{bmatrix} \] **b.** \[ E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 2 & -1 & 0 & -4 & -4 \\ 1 & -3 & -1 & 5 & 3 \\ 2 & 0 & 1 & 3 & -1 \end{bmatrix} \] **c.** \[ E = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \] ### Explanation: In these exercises, we are given an elementary matrix \( E \) and a matrix \( A \). The task is to identify the row operation represented by \( E \) and confirm that the product \( EA \) correctly represents the application of this row operation to the matrix \( A \). #### Elementary Matrix Operations: 1. **Row Interchange (a):** The matrix \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) swaps the first and second rows of matrix \( A \). 2. **Row Scaling and Addition (b):** The matrix \( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,