in Exercises 29-34, state wneiner each of ine junctions is one-to-one. 29. f(x)=-3x+2 30. f(x)= 1 32. f(x)=-3x²+1 33. f(x) =-2x³ +4 In Exercises 35-54, find the inverse of the given function and graph both on the same set of axes. 35. f(x)= 36. g(x)=x 37. f(x)=-4x+ 39. f(x)=x³-6 42. g(x)=x²-6, x20 9 5 38. f(s)-2- 41. g(x)=x²+8, x20 44. g(x)=3x³-5 47. f(x)= 50. g(x)=(x + 2)², x=-2 2x x-1 53. f(x)= = 31. f(x)=2x²-3 34. f(x)=x³-5 45. f(x)=-4x³ +9 48. g(x)=1 2x 51. f(x)=√x+3,x≥-3 54. f(x)= x+3 X 40. f(x) = -x³+4 43. f(x)=-2x³ +7 46. g(x)=2x5-6 49. g(x)=(x-1)²,x21 52. f(x)=√x-4,x24

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
100%

Number 51, please.

**Exercises 29-54: Identifying One-to-One Functions and Finding Inverses**

---

**Exercises 29-34: Determine if each function is one-to-one.**

29. \( f(x) = -3x + 2 \)

30. \( f(x) = \frac{4}{3}x + 1 \)

31. \( f(x) = 2x^2 - 3 \)

32. \( f(x) = -3x^2 + 1 \)

33. \( f(x) = -2x^3 + 4 \)

34. \( f(x) = \frac{1}{3}x^3 - 5 \)

---

**Exercises 35-54: Find the inverse of the given function and graph both on the same set of axes.**

35. \( f(x) = \frac{2}{3}x \)

36. \( g(x) = \frac{4}{3}x \)

37. \( f(x) = -4x + \frac{1}{5} \)

38. \( f(x) = 2x - \frac{9}{5} \)

39. \( f(x) = x^3 - 6 \)

40. \( g(x) = x^3 + 4 \)

41. \( g(x) = \sqrt{x + 8}, x \geq 0 \)

42. \( g(x) = x^2 - 6, x \geq 0 \)

43. \( f(x) = 2x^3 + 7 \)

44. \( g(x) = 3x^3 - 5 \)

45. \( f(x) = -4x^5 + 9 \)

46. \( g(x) = 2x^5 - 6 \)

47. \( f(x) = \frac{1}{3}x^4 \)

48. \( g(x) = \frac{-1}{2x} \)

49. \( g(x) = (x - 1)^2, x \geq 1 \)

50. \( g(x) = (x + 2)^2, x = -2 \)

51. \( f(x) = \sqrt{x + 3}, x = 3 \)

52. \( g(x) = \sqrt{x - 4
Transcribed Image Text:**Exercises 29-54: Identifying One-to-One Functions and Finding Inverses** --- **Exercises 29-34: Determine if each function is one-to-one.** 29. \( f(x) = -3x + 2 \) 30. \( f(x) = \frac{4}{3}x + 1 \) 31. \( f(x) = 2x^2 - 3 \) 32. \( f(x) = -3x^2 + 1 \) 33. \( f(x) = -2x^3 + 4 \) 34. \( f(x) = \frac{1}{3}x^3 - 5 \) --- **Exercises 35-54: Find the inverse of the given function and graph both on the same set of axes.** 35. \( f(x) = \frac{2}{3}x \) 36. \( g(x) = \frac{4}{3}x \) 37. \( f(x) = -4x + \frac{1}{5} \) 38. \( f(x) = 2x - \frac{9}{5} \) 39. \( f(x) = x^3 - 6 \) 40. \( g(x) = x^3 + 4 \) 41. \( g(x) = \sqrt{x + 8}, x \geq 0 \) 42. \( g(x) = x^2 - 6, x \geq 0 \) 43. \( f(x) = 2x^3 + 7 \) 44. \( g(x) = 3x^3 - 5 \) 45. \( f(x) = -4x^5 + 9 \) 46. \( g(x) = 2x^5 - 6 \) 47. \( f(x) = \frac{1}{3}x^4 \) 48. \( g(x) = \frac{-1}{2x} \) 49. \( g(x) = (x - 1)^2, x \geq 1 \) 50. \( g(x) = (x + 2)^2, x = -2 \) 51. \( f(x) = \sqrt{x + 3}, x = 3 \) 52. \( g(x) = \sqrt{x - 4
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 25 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education