In each of Problem 9 through 24, use the linearity of L¹, partial fraction expression, and Table 5.3.1 to find the inverse Laplace transform of the given function: 23- -28²-68-6 (s²+2s+2) s²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
In each of Problem 9 through 24, use the linearity of L¹, partial fraction expression, and Table 5.3.1 to find the
inverse Laplace transform of the given function:
23.
-28²-68-6
(s²+2s+2)s²
Transcribed Image Text:In each of Problem 9 through 24, use the linearity of L¹, partial fraction expression, and Table 5.3.1 to find the inverse Laplace transform of the given function: 23. -28²-68-6 (s²+2s+2)s²
1.
2.
f(t) = -¹{F(s)}
1
eat
t", n = positive integer
3.
4. t,p>-1
5. sin at
6.
cos at
sinh at
7.
8. cosh at
9. et sin bt
10. et cos bt
11. teat, n positive integer
12. uc(t)
13. uc(t)f(t-c)
14. e f(t)
15. ff(t-1) 9(7) dr
16. (t-c)
17. f(n) (t)
18 the f(t)
F(s) = L{f(t)}
1,8>0
s>a
g+18>0
r(p+1)
8> 0
8>0
8>0
8> lal
8> |a|
(5-4)² +52) > a
8
(5-4)² +6²
8>a
+
+
s> a
(s-a) **I'
e, s>0
e-cs F(s)
F(s-c)
F(s)G(s)
s" F(s)-8"-1f(0) -
(-1)^ f(n) (s)
- f(n-1) (0)
Transcribed Image Text:1. 2. f(t) = -¹{F(s)} 1 eat t", n = positive integer 3. 4. t,p>-1 5. sin at 6. cos at sinh at 7. 8. cosh at 9. et sin bt 10. et cos bt 11. teat, n positive integer 12. uc(t) 13. uc(t)f(t-c) 14. e f(t) 15. ff(t-1) 9(7) dr 16. (t-c) 17. f(n) (t) 18 the f(t) F(s) = L{f(t)} 1,8>0 s>a g+18>0 r(p+1) 8> 0 8>0 8>0 8> lal 8> |a| (5-4)² +52) > a 8 (5-4)² +6² 8>a + + s> a (s-a) **I' e, s>0 e-cs F(s) F(s-c) F(s)G(s) s" F(s)-8"-1f(0) - (-1)^ f(n) (s) - f(n-1) (0)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,