In each of Problem 9 through 24, use the linearity of L-1, partial fraction expression, and Table 5.3.1 to find the inverse Laplace transform of the given function: Please be handwritten

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

In each of Problem 9 through 24, use the linearity of L-1, partial fraction expression, and Table 5.3.1 to find the inverse Laplace transform of the given function:

Please be handwritten

f(t) = L-¹{F(s)}
1
eat
1.
2.
3. t", n = positive integer
4. t,p>-1
5.
sin at
6.
cos at
7.
sinh at
8.
cosh at
9.
et sin bt
10. eat cos bt
11. teat, n= positive integer
12. uc (t)
13. uc(t)f(t-c)
14. ect f(t)
15. Söf(t−7)g(7) dr
16. (t-c)
17. f(n) (t)
18. tf(t)
F(s) = L{f(t)}
},s>0
8-07
n!
8+1)
r(p+1)
s> 0
a
8²+², 8>0
s > a
s> 0
SD+1 "
$²+²8>0
a
$²², 8> |a|
5²³², 8> |a|
b
(s-a)² +6² 3
S-a
(s-a)² +6²
n!
(s-a)*+1)
e
-CS
3
e-cs F(s)
F(sc)
F(s)G(s)
s > a
8 > a
s > a
s>0
sF(s) s-1 f(0) -
(-1) f(n) (s)
- f(n-1) (0)
Transcribed Image Text:f(t) = L-¹{F(s)} 1 eat 1. 2. 3. t", n = positive integer 4. t,p>-1 5. sin at 6. cos at 7. sinh at 8. cosh at 9. et sin bt 10. eat cos bt 11. teat, n= positive integer 12. uc (t) 13. uc(t)f(t-c) 14. ect f(t) 15. Söf(t−7)g(7) dr 16. (t-c) 17. f(n) (t) 18. tf(t) F(s) = L{f(t)} },s>0 8-07 n! 8+1) r(p+1) s> 0 a 8²+², 8>0 s > a s> 0 SD+1 " $²+²8>0 a $²², 8> |a| 5²³², 8> |a| b (s-a)² +6² 3 S-a (s-a)² +6² n! (s-a)*+1) e -CS 3 e-cs F(s) F(sc) F(s)G(s) s > a 8 > a s > a s>0 sF(s) s-1 f(0) - (-1) f(n) (s) - f(n-1) (0)
5s+25
13- $³+10s+74
Transcribed Image Text:5s+25 13- $³+10s+74
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,