In both cases, a free-body diagram for the elevator would look like the adjacent diagram. Choose up to be the positive direction. To find the MAXIMUM tension, assume that the acceleration is up. Write Newton's second law for the elevator. 16. mg F ="la + mg = m(a+g)-m(0.0680g+g)-(4850 kg)(1 0680)(9.80m/s2) 5.08x10'N To find the MINIMUM tension, assume that the acceleration is down. Then Newton's second law for the elevator becomes the following. - (4850 kg) (0.9320) (9.80m/s2)-4.43x10 N

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

an elevator (mass 4850kg) is to be designed so that the max acceleration is 0.0680g. what are the max and min forces the motor should exert on the suporting cable? 

1. why did they add 1. wouldn't it just be Fn=m(a+g), which would be 4850(0.680g+ 9.8)?

In both cases, a free-body diagram for the elevator would look like the adjacent
diagram. Choose up to be the positive direction. To find the MAXIMUM tension,
assume that the acceleration is up. Write Newton's second law for the elevator.
16.
mg
F ="la + mg = m(a+g)-m(0.0680g+g)-(4850 kg)(1 0680)(9.80m/s2)
5.08x10'N
To find the MINIMUM tension, assume that the acceleration is down. Then Newton's second law
for the elevator becomes the following.
- (4850 kg) (0.9320) (9.80m/s2)-4.43x10 N
Transcribed Image Text:In both cases, a free-body diagram for the elevator would look like the adjacent diagram. Choose up to be the positive direction. To find the MAXIMUM tension, assume that the acceleration is up. Write Newton's second law for the elevator. 16. mg F ="la + mg = m(a+g)-m(0.0680g+g)-(4850 kg)(1 0680)(9.80m/s2) 5.08x10'N To find the MINIMUM tension, assume that the acceleration is down. Then Newton's second law for the elevator becomes the following. - (4850 kg) (0.9320) (9.80m/s2)-4.43x10 N
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Free body diagram
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON