In an economic enterprise, the total amount T that is produced is a function of the amount n of a given input used in the process of production. For example, the yield of a crop depends on the amount of fertilizer used, and the number of widgets manufactured depends on the number of workers. Because of the law of diminishing returns, a graph for T commonly has an inflection point followed by a maximum, so a cubic model may be appropriate. In this exercise we use the model shown below, with n measured in thousands of units of input and T measured in thousands of units of product. T = −2n3 + 3n2 + n (a) Make a graph of T as a function of n. Include values of n up to 1.5 thousand units.         (b) Express using functional notation the amount produced if the input is 1.02 thousand units. (Round your answer to two decimal places.) T(  ) Calculate that value. (Round your answer to two decimal places.)  thousand units (c) Find the approximate location of the inflection point. (Round your answers to one decimal place.) (n, T)  =  (  ,  ) Explain what it means in practical terms. (d) What is the maximum amount produced? (Round your answer to two decimal places.) T =  thousand units

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

In an economic enterprise, the total amount T that is produced is a function of the amount n of a given input used in the process of production. For example, the yield of a crop depends on the amount of fertilizer used, and the number of widgets manufactured depends on the number of workers. Because of the law of diminishing returns, a graph for T commonly has an inflection point followed by a maximum, so a cubic model may be appropriate. In this exercise we use the model shown below, with n measured in thousands of units of input and T measured in thousands of units of product.

T = −2n3 + 3n2 + n
(a) Make a graph of T as a function of n. Include values of n up to 1.5 thousand units.
   
   

(b) Express using functional notation the amount produced if the input is 1.02 thousand units. (Round your answer to two decimal places.)
T(  )

Calculate that value. (Round your answer to two decimal places.)
 thousand units

(c) Find the approximate location of the inflection point. (Round your answers to one decimal place.)
(n, T)  =  (  ,  )


Explain what it means in practical terms.


(d) What is the maximum amount produced? (Round your answer to two decimal places.)
T =  thousand units
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,