In an attempt to conserve energy (and, let’s be honest, save some cash), Bob decides to ride his bike to work every day. He starts out by riding a half mile uphill, which slows him down by 4 miles per hour. The rest of the ride is a mile downhill, which speeds him up by 5 miles per hour. After several days, he notices that when he reaches the top of the hill, he’s exactly halfway there if you measure in terms of time. How fast would Bob be riding if the trip were on level ground?
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
In an attempt to conserve energy (and, let’s be honest, save some cash), Bob decides to ride his bike to work every day. He starts out by riding a half mile uphill, which slows him down by 4 miles per hour. The rest of the ride is a mile downhill, which speeds him up by 5 miles per hour. After several days, he notices that when he reaches the top of the hill, he’s exactly halfway there if you measure in terms of time. How fast would Bob be riding if the trip were on level ground?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 7 images