In a trial run, the De Laval steam turbine at Oman Power Plant rotates at 3000 rpm. The steam is issued from the nozzle at 400 m/s and the nozzle angle is 20o. The blade speed ratio is 0.41and the friction loss in the blade channel is 15%of the kinetic energy corresponding to the relative velocity at the inlet to the blades. As a turbine engineer at that station, how do you determine the (i) power developed by the turbine for a flow rate of 10 kg/s and (ii) suitable inlet and outlet angles for the blades when axial thrust is zero. Also, how would you determine the size of the turbine wheel required? Draw a suitable velocity diagram.
In a trial run, the De Laval steam turbine at Oman Power Plant rotates at 3000 rpm. The steam is issued from the nozzle at 400 m/s and the nozzle angle is 20o. The blade speed ratio is 0.41and the friction loss in the blade channel is 15%of the kinetic energy corresponding to the relative velocity at the inlet to the blades. As a turbine engineer at that station, how do you determine the (i) power developed by the turbine for a flow rate of 10 kg/s and (ii) suitable inlet and outlet angles for the blades when axial thrust is zero. Also, how would you determine the size of the turbine wheel required? Draw a suitable velocity diagram.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
In a trial run, the De Laval steam turbine at Oman Power Plant rotates at 3000 rpm. The steam is issued from the nozzle at 400 m/s and the nozzle angle is 20o. The blade speed ratio is 0.41and the friction loss in the blade channel is 15%of the kinetic energy corresponding to the relative velocity at the inlet to the blades. As a turbine engineer at that station, how do you determine the (i) power developed by the turbine for a flow rate of 10 kg/s and (ii) suitable inlet and outlet angles for the blades when axial thrust is zero. Also, how would you determine the size of the turbine wheel required? Draw a suitable velocity diagram.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY