In a survey of consumers aged 12 and older, respondents were asked how many cell phones were in use by the household. (No two respondents were from the same household.) Among the respondents, 217 answered "none," 293 said "one," 369 said "two," 150 said "three," and 73 responded with four or more. A survey respondent is selected at random. Find the probability that his/her household has four or more cell phones in use. Is it unlikely for a household to have four or more cell phones in use? Consider an event to be unlikely if its probability is less than or equal to 0.05. P(four or more cell phones) =| (Round to three decimal places as needed.) Is it unlikely for a household to have four or more cell phones in use? O A. No, because the probability of a respondent with four or more cell phones in use is greater than 0.05. O B. Yes, because the probability of a respondent with four or more cell phones in use is greater than 0.05. OC. Yes, because the probability of a respondent with four or more cell phones in use is less than or equal to 0.05. O D. No, because the probability of a respondent with four or more cell phones in use is less than or equal to 0.05.
Addition Rule of Probability
It simply refers to the likelihood of an event taking place whenever the occurrence of an event is uncertain. The probability of a single event can be calculated by dividing the number of successful trials of that event by the total number of trials.
Expected Value
When a large number of trials are performed for any random variable ‘X’, the predicted result is most likely the mean of all the outcomes for the random variable and it is known as expected value also known as expectation. The expected value, also known as the expectation, is denoted by: E(X).
Probability Distributions
Understanding probability is necessary to know the probability distributions. In statistics, probability is how the uncertainty of an event is measured. This event can be anything. The most common examples include tossing a coin, rolling a die, or choosing a card. Each of these events has multiple possibilities. Every such possibility is measured with the help of probability. To be more precise, the probability is used for calculating the occurrence of events that may or may not happen. Probability does not give sure results. Unless the probability of any event is 1, the different outcomes may or may not happen in real life, regardless of how less or how more their probability is.
Basic Probability
The simple definition of probability it is a chance of the occurrence of an event. It is defined in numerical form and the probability value is between 0 to 1. The probability value 0 indicates that there is no chance of that event occurring and the probability value 1 indicates that the event will occur. Sum of the probability value must be 1. The probability value is never a negative number. If it happens, then recheck the calculation.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images