In a study investigating the effect of car speed on accident severity, 5,000 reports of fatal automobile accidents were examined, and the vehicle speed at impact was recorded for each one. For these 5,000 accidents, the average speed was 54 mph and the standard deviation was 11 mph. A histogram revealed that the vehicle speed at impact distribution was approximately normal. (Use the Empirical Rule.) (a) Approximately what percentage of these vehicle speeds were between 43 and 65 mph? (b) Approximately what percentage of these vehicle speeds exceeded 65 mph? Step 1 (a) Approximately what percentage of these vehicle speeds were between 43 and 65 mph? Recall that per the Empirical Rule, if a data distribution is mound shaped and approximately symmetric, then: • Approximately 68% of the observations fall within 1 standard deviation of the mean. Approximately 95% of the observations fall within 2 standard deviations of the mean. Approximately 99.7% of the observations fall within 3 standard deviations of the mean. For this data distribution, it is given that the mean and standard deviation are x = 54 and s = 11. To find the approximate percentage of the vehicle speeds that were between 43 mph and 65 mph, first calculate how far 43 mph and 65 mph are from the mean. distance between the lower value and the mean = 43 43 - 54 -11 -11 distance between the mean and the upper value = 65 65 - 54 11 11 Step 2 For the range 43 to 65 mph, the lower value is 11 less than the mean, and the upper value is 11 more than the mean. In other words, 43 is (1 standard deviation vv below the mean, and 65 is 1 standard deviation v lower value of 43 mph and the upper value of 65 mph. above the mean. This means that approximately 75 X % of the vehicle speeds of fatal accidents at impact fall between the

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
In a study investigating the effect of car speed on accident severity, 5,000 reports of fatal automobile accidents were examined, and the vehicle speed at impact was recorded for each
one. For these 5,000 accidents, the average speed was 54 mph and the standard deviation was 11 mph. A histogram revealed that the vehicle speed at impact distribution was
approximately normal. (Use the Empirical Rule.)
(a) Approximately what percentage of these vehicle speeds were between 43 and 65 mph?
(b) Approximately what percentage of these vehicle speeds exceeded 65 mph?
Step 1
(a) Approximately what percentage of these vehicle speeds were between 43 and 65 mph?
Recall that per the Empirical Rule, if a data distribution is mound shaped and approximately symmetric, then:
• Approximately 68% of the observations fall within 1 standard deviation of the mean.
Approximately 95% of the observations fall within 2 standard deviations of the mean.
Approximately 99.7% of the observations fall within 3 standard deviations of the mean.
For this data distribution, it is given that the mean and standard deviation are x = 54 and s = 11.
To find the approximate percentage of the vehicle speeds that were between 43 mph and 65 mph, first calculate how far 43 mph and 65 mph are from the mean.
distance between the lower value and the mean = 43
43 - 54
-11
-11
distance between the mean and the upper value = 65
65 - 54
11
11
Step 2
For the range 43 to 65 mph, the lower value is 11 less than the mean, and the upper value is 11 more than the mean. In other words, 43 is (1 standard deviation vv below the
mean, and 65 is 1 standard deviation v
lower value of 43 mph and the upper value of 65 mph.
above the mean. This means that approximately 75
X % of the vehicle speeds of fatal accidents at impact fall between the
Transcribed Image Text:In a study investigating the effect of car speed on accident severity, 5,000 reports of fatal automobile accidents were examined, and the vehicle speed at impact was recorded for each one. For these 5,000 accidents, the average speed was 54 mph and the standard deviation was 11 mph. A histogram revealed that the vehicle speed at impact distribution was approximately normal. (Use the Empirical Rule.) (a) Approximately what percentage of these vehicle speeds were between 43 and 65 mph? (b) Approximately what percentage of these vehicle speeds exceeded 65 mph? Step 1 (a) Approximately what percentage of these vehicle speeds were between 43 and 65 mph? Recall that per the Empirical Rule, if a data distribution is mound shaped and approximately symmetric, then: • Approximately 68% of the observations fall within 1 standard deviation of the mean. Approximately 95% of the observations fall within 2 standard deviations of the mean. Approximately 99.7% of the observations fall within 3 standard deviations of the mean. For this data distribution, it is given that the mean and standard deviation are x = 54 and s = 11. To find the approximate percentage of the vehicle speeds that were between 43 mph and 65 mph, first calculate how far 43 mph and 65 mph are from the mean. distance between the lower value and the mean = 43 43 - 54 -11 -11 distance between the mean and the upper value = 65 65 - 54 11 11 Step 2 For the range 43 to 65 mph, the lower value is 11 less than the mean, and the upper value is 11 more than the mean. In other words, 43 is (1 standard deviation vv below the mean, and 65 is 1 standard deviation v lower value of 43 mph and the upper value of 65 mph. above the mean. This means that approximately 75 X % of the vehicle speeds of fatal accidents at impact fall between the
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman